These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
568 related articles for article (PubMed ID: 10502521)
1. Regulation of bacteriophage lambda development by guanosine 5'-diphosphate-3'-diphosphate. Slomińska M; Neubauer P; Wegrzyn G Virology; 1999 Sep; 262(2):431-41. PubMed ID: 10502521 [TBL] [Abstract][Full Text] [Related]
2. HflD, an Escherichia coli protein involved in the lambda lysis-lysogeny switch, impairs transcription activation by lambdaCII. Parua PK; Mondal A; Parrack P Arch Biochem Biophys; 2010 Jan; 493(2):175-83. PubMed ID: 19853572 [TBL] [Abstract][Full Text] [Related]
3. Cell growth and lambda phage development controlled by the same essential Escherichia coli gene, ftsH/hflB. Herman C; Ogura T; Tomoyasu T; Hiraga S; Akiyama Y; Ito K; Thomas R; D'Ari R; Bouloc P Proc Natl Acad Sci U S A; 1993 Nov; 90(22):10861-5. PubMed ID: 8248182 [TBL] [Abstract][Full Text] [Related]
4. Host regulation of lysogenic decision in bacteriophage lambda: transmembrane modulation of FtsH (HflB), the cII degrading protease, by HflKC (HflA). Kihara A; Akiyama Y; Ito K Proc Natl Acad Sci U S A; 1997 May; 94(11):5544-9. PubMed ID: 9159109 [TBL] [Abstract][Full Text] [Related]
5. The phage lambda CII transcriptional activator carries a C-terminal domain signaling for rapid proteolysis. Kobiler O; Koby S; Teff D; Court D; Oppenheim AB Proc Natl Acad Sci U S A; 2002 Nov; 99(23):14964-9. PubMed ID: 12397182 [TBL] [Abstract][Full Text] [Related]
6. Escherichia coli HflK and HflC can individually inhibit the HflB (FtsH)-mediated proteolysis of lambdaCII in vitro. Bandyopadhyay K; Parua PK; Datta AB; Parrack P Arch Biochem Biophys; 2010 Sep; 501(2):239-43. PubMed ID: 20599668 [TBL] [Abstract][Full Text] [Related]
7. Proteolysis of the phage lambda CII regulatory protein by FtsH (HflB) of Escherichia coli. Shotland Y; Koby S; Teff D; Mansur N; Oren DA; Tatematsu K; Tomoyasu T; Kessel M; Bukau B; Ogura T; Oppenheim AB Mol Microbiol; 1997 Jun; 24(6):1303-10. PubMed ID: 9218777 [TBL] [Abstract][Full Text] [Related]
8. Physiological analysis of the stringent response elicited in an extreme thermophilic bacterium, Thermus thermophilus. Kasai K; Nishizawa T; Takahashi K; Hosaka T; Aoki H; Ochi K J Bacteriol; 2006 Oct; 188(20):7111-22. PubMed ID: 17015650 [TBL] [Abstract][Full Text] [Related]
9. ppGpp: a global regulator in Escherichia coli. Magnusson LU; Farewell A; Nyström T Trends Microbiol; 2005 May; 13(5):236-42. PubMed ID: 15866041 [TBL] [Abstract][Full Text] [Related]
10. Mechanism of regulation of transcription initiation by ppGpp. II. Models for positive control based on properties of RNAP mutants and competition for RNAP. Barker MM; Gaal T; Gourse RL J Mol Biol; 2001 Jan; 305(4):689-702. PubMed ID: 11162085 [TBL] [Abstract][Full Text] [Related]
11. (p)ppGpp regulates type 1 fimbriation of Escherichia coli by modulating the expression of the site-specific recombinase FimB. Aberg A; Shingler V; Balsalobre C Mol Microbiol; 2006 Jun; 60(6):1520-33. PubMed ID: 16796685 [TBL] [Abstract][Full Text] [Related]
12. The guanosine tetraphosphate (ppGpp) alarmone, DksA and promoter affinity for RNA polymerase in regulation of sigma-dependent transcription. Bernardo LM; Johansson LU; Solera D; Skärfstad E; Shingler V Mol Microbiol; 2006 May; 60(3):749-64. PubMed ID: 16629675 [TBL] [Abstract][Full Text] [Related]
13. Mechanism of regulation of transcription initiation by ppGpp. I. Effects of ppGpp on transcription initiation in vivo and in vitro. Barker MM; Gaal T; Josaitis CA; Gourse RL J Mol Biol; 2001 Jan; 305(4):673-88. PubMed ID: 11162084 [TBL] [Abstract][Full Text] [Related]
15. ppGpp with DksA controls gene expression in the locus of enterocyte effacement (LEE) pathogenicity island of enterohaemorrhagic Escherichia coli through activation of two virulence regulatory genes. Nakanishi N; Abe H; Ogura Y; Hayashi T; Tashiro K; Kuhara S; Sugimoto N; Tobe T Mol Microbiol; 2006 Jul; 61(1):194-205. PubMed ID: 16824105 [TBL] [Abstract][Full Text] [Related]
16. Rapid degradation of bacteriophage lambda O protein by ClpP/ClpX protease influences the lysis-versus-lysogenization decision of the phage under certain growth conditions of the host cells. Czyz A; Zielke R; Wegrzyn G Arch Virol; 2001 Aug; 146(8):1487-98. PubMed ID: 11676412 [TBL] [Abstract][Full Text] [Related]
17. Drastically decreased transcription from CII-activated promoters is responsible for impaired lysogenization of the Escherichia coli rpoA341 mutant by bacteriophage lambda. Szalewska-Pałasz A; Wegrzyn A; Obuchowski M; Pawłowski R; Bielawski K; Thomas MS; Wegrzyn G FEMS Microbiol Lett; 1996 Oct; 144(1):21-7. PubMed ID: 8870247 [TBL] [Abstract][Full Text] [Related]
18. A colicin-tolerant Escherichia coli mutant that confers hfl phenotype carries two mutations in the region coding for the C-terminal domain of FtsH (HflB). Teff D; Koby S; Shotland Y; Ogura T; Oppenheim AB FEMS Microbiol Lett; 2000 Feb; 183(1):115-7. PubMed ID: 10650212 [TBL] [Abstract][Full Text] [Related]
19. Activities of constitutive promoters in Escherichia coli. Liang S; Bipatnath M; Xu Y; Chen S; Dennis P; Ehrenberg M; Bremer H J Mol Biol; 1999 Sep; 292(1):19-37. PubMed ID: 10493854 [TBL] [Abstract][Full Text] [Related]
20. Characterization of a conserved alpha-helical, coiled-coil motif at the C-terminal domain of the ATP-dependent FtsH (HflB) protease of Escherichia coli. Shotland Y; Teff D; Koby S; Kobiler O; Oppenheim AB J Mol Biol; 2000 Jun; 299(4):953-64. PubMed ID: 10843850 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]