These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 10502619)

  • 41. A critical Examination of the Phenomenon of Bonding Area - Bonding Strength Interplay in Powder Tableting.
    Osei-Yeboah F; Chang SY; Sun CC
    Pharm Res; 2016 May; 33(5):1126-32. PubMed ID: 26767997
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The granule porosity controls the loss of compactibility for both dry- and wet-processed cellulose granules but at different rate.
    Nordström J; Alderborn G
    J Pharm Sci; 2015 Jun; 104(6):2029-2039. PubMed ID: 25872760
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Effect of Powdered Cellulose Nanofiber with Different Particle Sizes on the Physical Properties of Tablets Manufactured via Direct Compression.
    Nakamura S; Jinno M; Hamaoka M; Sakurada A; Sakamoto T
    Chem Pharm Bull (Tokyo); 2023; 71(12):887-896. PubMed ID: 38044141
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The effect of compression and decompression speed on the mechanical strength of compacts.
    Ruegger CE; Celik M
    Pharm Dev Technol; 2000; 5(4):485-94. PubMed ID: 11109248
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Particle size distribution and evolution in tablet structure during and after compaction.
    Fichtner F; Rasmuson A; Alderborn G
    Int J Pharm; 2005 Mar; 292(1-2):211-25. PubMed ID: 15725568
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The Effect of Cellulose Nanofibers on the Manufacturing of Mini-Tablets by Direct Powder Compression.
    Nakamura S; Nakura M; Sakamoto T
    Chem Pharm Bull (Tokyo); 2022; 70(9):628-636. PubMed ID: 36047234
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A hybrid approach to predict the relationship between tablet tensile strength and compaction pressure using analytical powder compression.
    Persson AS; Alderborn G
    Eur J Pharm Biopharm; 2018 Apr; 125():28-37. PubMed ID: 29277725
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Tablet formulation of an active pharmaceutical ingredient with a sticking and filming problem: direct compression and dry granulation evaluations.
    Bejugam NK; Mutyam SK; Shankar GN
    Drug Dev Ind Pharm; 2015 Feb; 41(2):333-41. PubMed ID: 24279424
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Adsorption of a poorly water-soluble drug onto porous calcium silicate by the sealed heating method.
    Kawano Y; Chen S; Hanawa T
    Int J Pharm; 2020 Sep; 587():119637. PubMed ID: 32663587
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Dependence of tablet brittleness on tensile strength and porosity.
    Gong X; Chang SY; Osei-Yeboah F; Paul S; Perumalla SR; Shi L; Sun WJ; Zhou Q; Sun CC
    Int J Pharm; 2015 Sep; 493(1-2):208-13. PubMed ID: 26226338
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Investigation of the tableting behavior of Ibuprofen DC 85 W.
    Al-Karawi C; Cech T; Bang F; Leopold CS
    Drug Dev Ind Pharm; 2018 Aug; 44(8):1262-1272. PubMed ID: 29499616
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Effect of geometric structure and surface wettability of glidant on tablet hardness.
    Ohta KM; Fuji M; Takei T; Chikazawa M
    Int J Pharm; 2003 Aug; 262(1-2):75-82. PubMed ID: 12927389
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Preparation of Curcuma comosa tablets using liquisolid techniques: In vitro and in vivo evaluation.
    Jaipakdee N; Limpongsa E; Sripanidkulchai BO; Piyachaturawat P
    Int J Pharm; 2018 Dec; 553(1-2):157-168. PubMed ID: 30316793
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Continuous direct tablet compression: effects of impeller rotation rate, total feed rate and drug content on the tablet properties and drug release.
    Järvinen MA; Paaso J; Paavola M; Leiviskä K; Juuti M; Muzzio F; Järvinen K
    Drug Dev Ind Pharm; 2013 Nov; 39(11):1802-8. PubMed ID: 23163644
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Effect of repeated compaction of tablets on tablet properties and work of compaction using an instrumented laboratory tablet press.
    Gamlen MJ; Martini LG; Al Obaidy KG
    Drug Dev Ind Pharm; 2015 Jan; 41(1):163-9. PubMed ID: 24171692
    [TBL] [Abstract][Full Text] [Related]  

  • 56. 3D simulation of internal tablet strength during tableting.
    Siiriä SM; Antikainen O; Heinämäki J; Yliruusi J
    AAPS PharmSciTech; 2011 Jun; 12(2):593-603. PubMed ID: 21541828
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Tensile strength and disintegration of tableted silicified microcrystalline cellulose: influences of interparticle bonding.
    Kachrimanis K; Nikolakakis I; Malamataris S
    J Pharm Sci; 2003 Jul; 92(7):1489-501. PubMed ID: 12820153
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Considerations about the theoretically expected crushing strength of tablets from binary powder mixtures: double layer tablets versus arithmetic additivity rule.
    Belda PM; Mielck JB
    Eur J Pharm Biopharm; 2006 Nov; 64(3):343-50. PubMed ID: 16914296
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Effects of initial particle size on the tableting properties of L-lysine monohydrochloride dihydrate powder.
    Sun C; Grant DJ
    Int J Pharm; 2001 Mar; 215(1-2):221-8. PubMed ID: 11250107
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Full Out-of-Die Compressibility and Compactibility Profiles From Two Tablets.
    Katz JM; Buckner IS
    J Pharm Sci; 2017 Mar; 106(3):843-849. PubMed ID: 27938894
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.