BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 10502659)

  • 1. The influence of erythropoietin on the vascular responses of rat resistance arteries.
    Wu XC; Richards NT; Johns EJ
    Exp Physiol; 1999 Sep; 84(5):917-27. PubMed ID: 10502659
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of erythropoietin and nitric oxide in modulating the tone of human renal interlobular and subcutaneous arteries from uraemic subjects.
    Wu XC; Richards NT; Johns EJ
    Clin Sci (Lond); 1999 Dec; 97(6):639-47. PubMed ID: 10585891
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Relationship between erythropoietin and nitric oxide in the contraction of rat renal arcuate arteries and human umbilical vein endothelial cells.
    Wu XC; Johns EJ; Richards NT
    Clin Sci (Lond); 1999 Oct; 97(4):413-9. PubMed ID: 10491341
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preservation of vascular function in rat mesenteric resistance arteries following cold storage, studied by small vessel myography.
    McIntyre CA; Williams BC; Lindsay RM; McKnight JA; Hadoke PW
    Br J Pharmacol; 1998 Apr; 123(8):1555-60. PubMed ID: 9605561
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inhibition of acetylcholine-induced EDHF response by elevated glucose in rat mesenteric artery.
    Ozkan MH; Uma S
    Life Sci; 2005 Nov; 78(1):14-21. PubMed ID: 16125203
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Augmented endothelium-derived hyperpolarizing factor-mediated relaxations attenuate endothelial dysfunction in femoral and mesenteric, but not in carotid arteries from type I diabetic rats.
    Shi Y; Ku DD; Man RY; Vanhoutte PM
    J Pharmacol Exp Ther; 2006 Jul; 318(1):276-81. PubMed ID: 16565165
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vasorelaxant effect of taurine is diminished by tetraethylammonium in rat isolated arteries.
    Niu LG; Zhang MS; Liu Y; Xue WX; Liu DB; Zhang J; Liang YQ
    Eur J Pharmacol; 2008 Feb; 580(1-2):169-74. PubMed ID: 17997400
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Radiotelemetric monitoring of blood pressure and mesenteric arterial bed responsiveness in rats with streptozotocin-induced diabetes.
    Tatchum-Talom R; Gopalakrishnan V; McNeill JR
    Can J Physiol Pharmacol; 2000 Sep; 78(9):721-8. PubMed ID: 11007535
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of dietary salt loading on the responses of isolated rat mesenteric arteries to leptin.
    Jaffar MM; Myers DS; Hainsworth LJ; Hainsworth R; Drinkhill MJ
    Am J Hypertens; 2005 Apr; 18(4 Pt 1):500-3. PubMed ID: 15831359
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Acute hyperthyroidism alters adrenoceptor- and muscarinic receptor-mediated responses in isolated rat renal and femoral arteries.
    Iwata T; Honda H
    Eur J Pharmacol; 2004 Jun; 493(1-3):191-9. PubMed ID: 15189782
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparable vasorelaxant effects of 17alpha- and 17beta-oestradiol on rat mesenteric resistance arteries: an action independent of the oestrogen receptor.
    Naderali EK; Walker AB; Doyle P; Williams G
    Clin Sci (Lond); 1999 Dec; 97(6):649-55. PubMed ID: 10585892
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microvascular versus macrovascular dysfunction in type 2 diabetes: differences in contractile responses to endothelin-1.
    Sachidanandam K; Harris A; Hutchinson J; Ergul A
    Exp Biol Med (Maywood); 2006 Jun; 231(6):1016-21. PubMed ID: 16741041
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Upregulation of Rho-kinase (ROCK-2) expression and enhanced contraction to endothelin-1 in the mesenteric artery from lipopolysaccharide-treated rats.
    Büyükafşar K; Arikan O; Ark M; Kubat H; Ozveren E
    Eur J Pharmacol; 2004 Sep; 498(1-3):211-7. PubMed ID: 15363997
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vasodilator effects of leptin on canine isolated mesenteric arteries and veins.
    Mohammed MM; Myers DS; Sofola OA; Hainsworth R; Drinkhill MJ
    Clin Exp Pharmacol Physiol; 2007 Aug; 34(8):771-4. PubMed ID: 17600555
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of inducible nitric oxide synthase in lipopolysaccharide-mediated hyporeactivity to vasoconstrictors differs among isolated rat arteries.
    Piepot HA; Groeneveld AB; van Lambalgen AA; Sipkema P
    Clin Sci (Lond); 2002 Mar; 102(3):297-305. PubMed ID: 11869170
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vasomotor effects of noradrenaline, acetylcholine, histamine, 5-hydroxytryptamine and bradykinin on snake (Trimeresurus flavoviridis) basilar arteries.
    Yoshinaga N; Okuno T; Watanabe Y; Matsumoto T; Shiraishi M; Obi T; Yabuki A; Miyamoto A
    Comp Biochem Physiol C Toxicol Pharmacol; 2007 Nov; 146(4):478-83. PubMed ID: 17604230
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of endothelin in FK506-induced vascular reactivity changes in rat perfused kidney.
    Tekes E; Soydan G; Tuncer M
    Eur J Pharmacol; 2005 Jul; 517(1-2):92-6. PubMed ID: 15964565
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vascular effects of long-term propranolol administration after chronic nitric oxide blockade.
    Priviero FB; Teixeira CE; Claudino MA; De Nucci G; Zanesco A; Antunes E
    Eur J Pharmacol; 2007 Oct; 571(2-3):189-96. PubMed ID: 17610863
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-salt diet and responses of the pressurized mesenteric artery of the dog to noradrenaline and acetylcholine.
    Sofola O; Knill A; Myers D; Hainsworth R; Drinkhill M
    Clin Exp Pharmacol Physiol; 2004 Oct; 31(10):696-9. PubMed ID: 15554910
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vasorelaxing effects of propranolol in rat aorta and mesenteric artery: a role for nitric oxide and calcium entry blockade.
    Priviero FB; Teixeira CE; Toque HA; Claudino MA; Webb RC; De Nucci G; Zanesco A; Antunes E
    Clin Exp Pharmacol Physiol; 2006; 33(5-6):448-55. PubMed ID: 16700877
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.