BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 10502754)

  • 1. Magnetic coupling of creatine/phosphocreatine protons in rat skeletal muscle, as studied by (1)H-magnetization transfer MRS.
    Kruiskamp MJ; de Graaf RA; van Vliet G; Nicolay K
    Magn Reson Med; 1999 Oct; 42(4):665-72. PubMed ID: 10502754
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Magnetic coupling between water and creatine protons in human brain and skeletal muscle, as measured using inversion transfer (1)H-MRS.
    Kruiskamp MJ; de Graaf RA; van der Grond J; Lamerichs R; Nicolay K
    NMR Biomed; 2001 Feb; 14(1):1-4. PubMed ID: 11252034
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dipolar coupling and ordering effects observed in magnetic resonance spectra of skeletal muscle.
    Boesch C; Kreis R
    NMR Biomed; 2001 Apr; 14(2):140-8. PubMed ID: 11320539
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On the importance of exchangeable NH protons in creatine for the magnetic coupling of creatine methyl protons in skeletal muscle.
    Kruiskamp MJ; Nicolay K
    J Magn Reson; 2001 Mar; 149(1):8-12. PubMed ID: 11273745
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Magnetization transfer effect on the creatine methyl resonance studied by CW off-resonance irradiation in human skeletal muscle on a clinical MR system.
    Renema WK; Klomp DW; Philippens ME; van den Bergh AJ; Wieringa B; Heerschap A
    Magn Reson Med; 2003 Sep; 50(3):468-73. PubMed ID: 12939753
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Residual dipolar coupling of the Cr/PCr methyl resonance in resting human medial gastrocnemius muscle.
    Hanstock CC; Thompson RB; Trump ME; Gheorghiu D; Hochachka PW; Allen PS
    Magn Reson Med; 1999 Sep; 42(3):421-4. PubMed ID: 10467284
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 1H and (31)P magnetization transfer studies of hindleg muscle in wild-type and creatine kinase-deficient mice.
    Kruiskamp MJ; van Vliet G; Nicolay K
    Magn Reson Med; 2000 May; 43(5):657-64. PubMed ID: 10800030
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Magnetization transfer affects the proton creatine/phosphocreatine signal intensity: in vivo demonstration in the rat brain.
    Dreher W; Norris DG; Leibfritz D
    Magn Reson Med; 1994 Jan; 31(1):81-4. PubMed ID: 8121275
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Magnetization transfer MRS.
    Leibfritz D; Dreher W
    NMR Biomed; 2001 Apr; 14(2):65-76. PubMed ID: 11320534
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dependence of residual dipolar couplings on foot angle in (1)H MR spectra from skeletal muscle.
    Agarwal N; Pagès G; D' Silva L; Said N; Kuchel PW; Velan SS
    Magn Reson Imaging; 2014 May; 32(4):379-84. PubMed ID: 24559865
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Resolution of creatine and phosphocreatine 1H signals in isolated human skeletal muscle using HR-MAS 1H NMR.
    Chen JH; Wu YV; DeCarolis P; O'Connor R; Somberg CJ; Singer S
    Magn Reson Med; 2008 Jun; 59(6):1221-4. PubMed ID: 18506783
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Relaxation-compensated CEST-MRI at 7 T for mapping of creatine content and pH--preliminary application in human muscle tissue in vivo.
    Rerich E; Zaiss M; Korzowski A; Ladd ME; Bachert P
    NMR Biomed; 2015 Nov; 28(11):1402-12. PubMed ID: 26374674
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of exercise on the creatine resonances in 1H MR spectra of human skeletal muscle.
    Kreis R; Jung B; Slotboom J; Felblinger J; Boesch C
    J Magn Reson; 1999 Apr; 137(2):350-7. PubMed ID: 10089169
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of chronic dietary creatine feeding on cardiac energy metabolism and on creatine content in heart, skeletal muscle, brain, liver and kidney.
    Horn M; Frantz S; Remkes H; Laser A; Urban B; Mettenleiter A; Schnackerz K; Neubauer S
    J Mol Cell Cardiol; 1998 Feb; 30(2):277-84. PubMed ID: 9515004
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evidence of multiple ethanol pools in the brain: an in vivo proton magnetization transfer study.
    Meyerhoff DJ; Rooney WD; Tokumitsu T; Weiner MW
    Alcohol Clin Exp Res; 1996 Oct; 20(7):1283-8. PubMed ID: 8904983
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Combining CW and pulsed saturation allows in vivo quantitation of magnetization transfer observed for total creatine by (1)H-NMR-spectroscopy of rat brain.
    Roell SA; Dreher W; Leibfritz D
    Magn Reson Med; 1999 Aug; 42(2):222-7. PubMed ID: 10440945
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An (1)H-MRS evaluation of the phosphocreatine/creatine pool (tCr) in human muscle.
    Trump ME; Hanstock CC; Allen PS; Gheorghiu D; Hochachka PW
    Am J Physiol Regul Integr Comp Physiol; 2001 Mar; 280(3):R889-96. PubMed ID: 11171670
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Parallel increases in phosphocreatine and total creatine in human vastus lateralis muscle during creatine supplementation.
    Brault JJ; Towse TF; Slade JM; Meyer RA
    Int J Sport Nutr Exerc Metab; 2007 Dec; 17(6):624-34. PubMed ID: 18156666
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Magnetization transfer attenuation of creatine resonances in localized proton MRS of human brain in vivo.
    Helms G; Frahm J
    NMR Biomed; 1999 Dec; 12(8):490-4. PubMed ID: 10668041
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mitochondrial respiration in creatine-loaded muscle: is there 31P-MRS evidence of direct effects of phosphocreatine and creatine in vivo?
    Kemp G
    J Appl Physiol (1985); 2006 Apr; 100(4):1428-9; author reply 1429-30. PubMed ID: 16540719
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.