BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 10502903)

  • 1. Initial tooth displacement in vivo as a predictor of long-term displacement.
    Soenen PL; Dermaut LR; Verbeeck RM
    Eur J Orthod; 1999 Aug; 21(4):405-11. PubMed ID: 10502903
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [The dry skull model in orthodontics].
    Dermaut LR
    Verh K Acad Geneeskd Belg; 2002; 64(1):19-54. PubMed ID: 11995200
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Initial orthopaedic displacement compared with longitudinal displacement of the maxilla after a forward force application. An experimental study in dogs.
    de Pauw GA; Dermaut LR; Verbeeck RM
    Eur J Orthod; 1999 Dec; 21(6):671-8. PubMed ID: 10665196
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Three-dimensional finite element modelling of a dog skull for the simulation of initial orthopaedic displacements.
    Verrue V; Dermaut L; Verhegghe B
    Eur J Orthod; 2001 Oct; 23(5):517-27. PubMed ID: 11668871
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The value of the centre of rotation in initial and longitudinal tooth and bone displacement.
    De Pauw G; Dermaut L; De Bruyn H
    Eur J Orthod; 2003 Jun; 25(3):285-91. PubMed ID: 12831219
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The importance of humidity in the in vitro study of the cranium with regard to initial bone displacement after force application.
    Govaert L; Dermaut L
    Eur J Orthod; 1997 Aug; 19(4):423-30. PubMed ID: 9308263
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Different bracket-archwire combinations for simulated correction of two-dimensional tooth malalignment: Leveling outcomes and initial force systems.
    Holtmann S; Konermann A; Keilig L; Reimann S; Jäger A; Montasser M; El-Bialy T; Bourauel C
    J Orofac Orthop; 2014 Nov; 75(6):459-70. PubMed ID: 25344125
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rate of orthodontic tooth movement after changing the force magnitude: an experimental study in beagle dogs.
    Van Leeuwen EJ; Kuijpers-Jagtman AM; Von den Hoff JW; Wagener FA; Maltha JC
    Orthod Craniofac Res; 2010 Nov; 13(4):238-45. PubMed ID: 21040467
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differentiated analysis of orthodontic tooth movement in rats with an improved rat model and three-dimensional imaging.
    Kirschneck C; Proff P; Fanghaenel J; Behr M; Wahlmann U; Roemer P
    Ann Anat; 2013 Dec; 195(6):539-53. PubMed ID: 24183941
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The value of the macerated skull as a model used in orthopaedic research.
    De Clerck H; Dermaut L; Timmerman H
    Eur J Orthod; 1990 Aug; 12(3):263-71. PubMed ID: 2401333
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Holographic analysis of the initial canine displacement produced by four different retraction springs.
    Kumar YM; Ravindran NS; Balasubramaniam MR
    Angle Orthod; 2009 Mar; 79(2):368-72. PubMed ID: 19216610
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Physical properties of root cementum: part 11. Continuous vs intermittent controlled orthodontic forces on root resorption. A microcomputed-tomography study.
    Ballard DJ; Jones AS; Petocz P; Darendeliler MA
    Am J Orthod Dentofacial Orthop; 2009 Jul; 136(1):8.e1-8; discussion 8-9. PubMed ID: 19577132
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biomechanical responses of tooth to orthodontic forces applied at the lingual bracket positions.
    Tanne K; Lu YC; Sakuda M
    J Osaka Univ Dent Sch; 1992 Dec; 32():6-13. PubMed ID: 1341711
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biomechanical behaviour of the periodontal ligament of the beagle dog during the first 5 hours of orthodontic force application.
    Jónsdóttir SH; Giesen EB; Maltha JC
    Eur J Orthod; 2006 Dec; 28(6):547-52. PubMed ID: 17101705
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The future of orthodontic materials: the long-term view.
    Kusy RP
    Am J Orthod Dentofacial Orthop; 1998 Jan; 113(1):91-5. PubMed ID: 9457023
    [No Abstract]   [Full Text] [Related]  

  • 16. Positional changes of maxillary central incisors following orthodontic treatment using single-crown implants as fixed reference markers.
    Brahem EB; Holm B; Sonnesen L; Worsaae N; Gotfredsen K
    Clin Oral Implants Res; 2017 Dec; 28(12):1560-1566. PubMed ID: 28626865
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Physical properties of root cementum: part 14. The amount of root resorption after force application for 12 weeks on maxillary and mandibular premolars: a microcomputed-tomography study.
    Paetyangkul A; Türk T; Elekdağ-Türk S; Jones AS; Petocz P; Darendeliler MA
    Am J Orthod Dentofacial Orthop; 2009 Oct; 136(4):492.e1-9; discussion 492-3. PubMed ID: 19815148
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The drum spring (DS) retractor: constant and continuous force for canine retraction.
    Darendeliler MA; Darendeliler H; Uner O
    Eur J Orthod; 1997 Apr; 19(2):115-30. PubMed ID: 9183061
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Measuring dental drift and orthodontic tooth movement in response to various initial forces in adult rats.
    King GJ; Keeling SD; McCoy EA; Ward TH
    Am J Orthod Dentofacial Orthop; 1991 May; 99(5):456-65. PubMed ID: 2028935
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lingually displaced mandibular canine teeth: orthodontic treatment alternatives in the dog.
    Oakes AB; Beard GB
    J Vet Dent; 1992 Mar; 9(1):20-5. PubMed ID: 1290593
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.