BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 10504259)

  • 1. Replacement of ATP with ADP affects the dynamic and conformational properties of actin monomer.
    Gaszner B; Nyitrai M; Hartvig N; Köszegi T; Somogyi B; Belágyi J
    Biochemistry; 1999 Sep; 38(39):12885-92. PubMed ID: 10504259
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conformational and dynamic differences between actin filaments polymerized from ATP- or ADP-actin monomers.
    Nyitrai M; Hild G; Hartvig N; Belágyi J; Somogyi B
    J Biol Chem; 2000 Dec; 275(52):41143-9. PubMed ID: 11005806
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nucleotide exchange and rheometric studies with F-actin prepared from ATP- or ADP-monomeric actin.
    Newman J; Zaner KS; Schick KL; Gershman LC; Selden LA; Kinosian HJ; Travis JL; Estes JE
    Biophys J; 1993 May; 64(5):1559-66. PubMed ID: 8324191
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nucleotide-dependence of G-actin conformation from multiple molecular dynamics simulations and observation of a putatively polymerization-competent superclosed state.
    Splettstoesser T; Noé F; Oda T; Smith JC
    Proteins; 2009 Aug; 76(2):353-64. PubMed ID: 19156817
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differences in G-actin containing bound ATP or ADP: the Mg2+-induced conformational change requires ATP.
    Frieden C; Patane K
    Biochemistry; 1985 Jul; 24(15):4192-6. PubMed ID: 4052388
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Conformational changes in subdomain 2 of G-actin: fluorescence probing by dansyl ethylenediamine attached to Gln-41.
    Kim E; Motoki M; Seguro K; Muhlrad A; Reisler E
    Biophys J; 1995 Nov; 69(5):2024-32. PubMed ID: 8580345
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nucleotide exchange, structure, and mechanical properties of filaments assembled from ATP-actin and ADP-actin.
    Pollard TD; Goldberg I; Schwarz WH
    J Biol Chem; 1992 Oct; 267(28):20339-45. PubMed ID: 1400353
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nucleotide-dependent conformational states of actin.
    Pfaendtner J; Branduardi D; Parrinello M; Pollard TD; Voth GA
    Proc Natl Acad Sci U S A; 2009 Aug; 106(31):12723-8. PubMed ID: 19620726
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multiple inequivalent metal-nucleotide coordination environments in the presence of the VO2+-inhibited nitrogenase iron protein: pH-dependent structural rearrangements at the nucleotide binding site.
    Petersen J; Fisher K; Mitchell CJ; Lowe DJ
    Biochemistry; 2002 Nov; 41(44):13253-63. PubMed ID: 12403627
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intermonomer cross-linking of F-actin alters the dynamics of its interaction with H-meromyosin in the weak-binding state.
    Hegyi G; Belágyi J
    FEBS J; 2006 May; 273(9):1896-905. PubMed ID: 16640554
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The influence of divalent cations on the dynamic properties of actin filaments: a spectroscopic study.
    Hild G; Nyitrai M; Belágyi J; Somogyi B
    Biophys J; 1998 Dec; 75(6):3015-22. PubMed ID: 9826621
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The crystal structure of uncomplexed actin in the ADP state.
    Otterbein LR; Graceffa P; Dominguez R
    Science; 2001 Jul; 293(5530):708-11. PubMed ID: 11474115
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Divalent cation-, nucleotide-, and polymerization-dependent changes in the conformation of subdomain 2 of actin.
    Moraczewska J; Wawro B; Seguro K; Strzelecka-Golaszewska H
    Biophys J; 1999 Jul; 77(1):373-85. PubMed ID: 10388764
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spectroscopic study of conformational changes in subdomain 1 of G-actin: influence of divalent cations.
    Nyitrai M; Hild G; Belágyi J; Somogyi B
    Biophys J; 1997 Oct; 73(4):2023-32. PubMed ID: 9336197
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A reversible conformational transition in muscle actin is caused by nucleotide exchange and uncovers cysteine in position 10.
    Drewes G; Faulstich H
    J Biol Chem; 1991 Mar; 266(9):5508-13. PubMed ID: 2005093
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nucleotide effects on the structure and dynamics of actin.
    Zheng X; Diraviyam K; Sept D
    Biophys J; 2007 Aug; 93(4):1277-83. PubMed ID: 17526584
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Partial specific volume and adiabatic compressibility of G-actin depend on the bound nucleotide.
    Kikumoto M; Tamura Y; Ooi A; Mihashi K
    J Biochem; 2003 May; 133(5):687-91. PubMed ID: 12801922
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The end of a polymerizing actin filament contains numerous ATP-subunit segments that are disconnected by ADP-subunits resulting from ATP hydrolysis.
    Pieper U; Wegner A
    Biochemistry; 1996 Apr; 35(14):4396-402. PubMed ID: 8605188
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular investigations into the mechanics of actin in different nucleotide states.
    Lee JY; Iverson TM; Dima RI
    J Phys Chem B; 2011 Jan; 115(1):186-95. PubMed ID: 21141951
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamics of the nucleotide pocket of myosin measured by spin-labeled nucleotides.
    Naber N; Purcell TJ; Pate E; Cooke R
    Biophys J; 2007 Jan; 92(1):172-84. PubMed ID: 17028139
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.