These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 10504260)

  • 21. Opsins with mutations at the site of chromophore attachment constitutively activate transducin but are not phosphorylated by rhodopsin kinase.
    Robinson PR; Buczyłko J; Ohguro H; Palczewski K
    Proc Natl Acad Sci U S A; 1994 Jun; 91(12):5411-5. PubMed ID: 8202499
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Structure and function in rhodopsin: replacement by alanine of cysteine residues 110 and 187, components of a conserved disulfide bond in rhodopsin, affects the light-activated metarhodopsin II state.
    Davidson FF; Loewen PC; Khorana HG
    Proc Natl Acad Sci U S A; 1994 Apr; 91(9):4029-33. PubMed ID: 8171030
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Structure and function in rhodopsin. Single cysteine substitution mutants in the cytoplasmic interhelical E-F loop region show position-specific effects in transducin activation.
    Yang K; Farrens DL; Hubbell WL; Khorana HG
    Biochemistry; 1996 Sep; 35(38):12464-9. PubMed ID: 8823181
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Structural studies of metarhodopsin II, the activated form of the G-protein coupled receptor, rhodopsin.
    Choi G; Landin J; Galan JF; Birge RR; Albert AD; Yeagle PL
    Biochemistry; 2002 Jun; 41(23):7318-24. PubMed ID: 12044163
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Three cytoplasmic loops of rhodopsin interact with transducin.
    König B; Arendt A; McDowell JH; Kahlert M; Hargrave PA; Hofmann KP
    Proc Natl Acad Sci U S A; 1989 Sep; 86(18):6878-82. PubMed ID: 2780545
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mechanism of rhodopsin kinase activation.
    Palczewski K; Buczyłko J; Kaplan MW; Polans AS; Crabb JW
    J Biol Chem; 1991 Jul; 266(20):12949-55. PubMed ID: 2071581
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Disulfide bond exchange in rhodopsin.
    Kono M; Yu H; Oprian DD
    Biochemistry; 1998 Feb; 37(5):1302-5. PubMed ID: 9477956
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Characterization of mutant rhodopsins responsible for autosomal dominant retinitis pigmentosa. Mutations on the cytoplasmic surface affect transducin activation.
    Min KC; Zvyaga TA; Cypess AM; Sakmar TP
    J Biol Chem; 1993 May; 268(13):9400-4. PubMed ID: 8486634
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Rhodopsin activation blocked by metal-ion-binding sites linking transmembrane helices C and F.
    Sheikh SP; Zvyaga TA; Lichtarge O; Sakmar TP; Bourne HR
    Nature; 1996 Sep; 383(6598):347-50. PubMed ID: 8848049
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Role of the conserved NPxxY(x)5,6F motif in the rhodopsin ground state and during activation.
    Fritze O; Filipek S; Kuksa V; Palczewski K; Hofmann KP; Ernst OP
    Proc Natl Acad Sci U S A; 2003 Mar; 100(5):2290-5. PubMed ID: 12601165
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Carboxyl terminal of rhodopsin kinase is required for the phosphorylation of photo-activated rhodopsin.
    Yu QM; Cheng ZJ; Zhao J; Zhou TH; Wu YL; MA L; Pei G
    Cell Res; 1998 Dec; 8(4):303-10. PubMed ID: 9934538
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Characterization of rhodopsin mutants that bind transducin but fail to induce GTP nucleotide uptake. Classification of mutant pigments by fluorescence, nucleotide release, and flash-induced light-scattering assays.
    Ernst OP; Hofmann KP; Sakmar TP
    J Biol Chem; 1995 May; 270(18):10580-6. PubMed ID: 7737995
    [TBL] [Abstract][Full Text] [Related]  

  • 33. State-dependent disulfide cross-linking in rhodopsin.
    Yu H; Kono M; Oprian DD
    Biochemistry; 1999 Sep; 38(37):12028-32. PubMed ID: 10508406
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Constitutive activation of opsin: interaction of mutants with rhodopsin kinase and arrestin.
    Rim J; Oprian DD
    Biochemistry; 1995 Sep; 34(37):11938-45. PubMed ID: 7547930
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mechanism of quenching of phototransduction. Binding competition between arrestin and transducin for phosphorhodopsin.
    Krupnick JG; Gurevich VV; Benovic JL
    J Biol Chem; 1997 Jul; 272(29):18125-31. PubMed ID: 9218446
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Interaction between photoactivated rhodopsin and its kinase: stability and kinetics of complex formation.
    Pulvermüller A; Palczewski K; Hofmann KP
    Biochemistry; 1993 Dec; 32(51):14082-8. PubMed ID: 8260489
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Structural and enzymatic aspects of rhodopsin phosphorylation.
    Ohguro H; Rudnicka-Nawrot M; Buczyłko J; Zhao X; Taylor JA; Walsh KA; Palczewski K
    J Biol Chem; 1996 Mar; 271(9):5215-24. PubMed ID: 8617805
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Function of the farnesyl moiety in visual signalling.
    McCarthy NE; Akhtar M
    Biochem J; 2000 Apr; 347 Pt 1(Pt 1):163-71. PubMed ID: 10727415
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Rhodopsin phosphorylation sites and their role in arrestin binding.
    Zhang L; Sports CD; Osawa S; Weiss ER
    J Biol Chem; 1997 Jun; 272(23):14762-8. PubMed ID: 9169442
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Characterization of rhodopsin-transducin interaction: a mutant rhodopsin photoproduct with a protonated Schiff base activates transducin.
    Zvyaga TA; Fahmy K; Sakmar TP
    Biochemistry; 1994 Aug; 33(32):9753-61. PubMed ID: 8068654
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.