These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
146 related articles for article (PubMed ID: 10504575)
41. Ethylene Biosynthesis-Inducing Endoxylanase Is Translocated through the Xylem of Nicotiana tabacum cv Xanthi Plants. Bailey BA; Taylor R; Dean JF; Anderson JD Plant Physiol; 1991 Nov; 97(3):1181-6. PubMed ID: 16668506 [TBL] [Abstract][Full Text] [Related]
42. [Ethylene-induced activation of xylanase in adventitious roots of maize as a response to the stress effect of root submersion]. Bragina TV; Martinovich LI; Rodionova NA; Bezborodov AM; Grineva GM Prikl Biokhim Mikrobiol; 2001; 37(6):722-5. PubMed ID: 11771328 [TBL] [Abstract][Full Text] [Related]
43. Degradation of xylan to D-xylose by recombinant Saccharomyces cerevisiae coexpressing the Aspergillus niger beta-xylosidase (xlnD) and the Trichoderma reesei xylanase II (xyn2) genes. La Grange DC; Pretorius IS; Claeyssens M; van Zyl WH Appl Environ Microbiol; 2001 Dec; 67(12):5512-9. PubMed ID: 11722900 [TBL] [Abstract][Full Text] [Related]
44. Reduced expression of the tomato ethylene receptor gene LeETR4 enhances the hypersensitive response to Xanthomonas campestris pv. vesicatoria. Ciardi JA; Tieman DM; Jones JB; Klee HJ Mol Plant Microbe Interact; 2001 Apr; 14(4):487-95. PubMed ID: 11310736 [TBL] [Abstract][Full Text] [Related]
45. Differential control of ethylene responses by GREEN-RIPE and GREEN-RIPE LIKE1 provides evidence for distinct ethylene signaling modules in tomato. Ma Q; Du W; Brandizzi F; Giovannoni JJ; Barry CS Plant Physiol; 2012 Dec; 160(4):1968-84. PubMed ID: 23043080 [TBL] [Abstract][Full Text] [Related]
46. Gene Editing of the Decoy Receptor Leibman-Markus M; Gupta R; Pizarro L; Gershony O; Rav-David D; Elad Y; Bar M Front Fungal Biol; 2021; 2():678840. PubMed ID: 37744104 [TBL] [Abstract][Full Text] [Related]
47. Ectopic overexpression of tomato JERF3 in tobacco activates downstream gene expression and enhances salt tolerance. Wang H; Huang Z; Chen Q; Zhang Z; Zhang H; Wu Y; Huang D; Huang R Plant Mol Biol; 2004 May; 55(2):183-92. PubMed ID: 15604674 [TBL] [Abstract][Full Text] [Related]
48. A tomato MADS-box protein, SlCMB1, regulates ethylene biosynthesis and carotenoid accumulation during fruit ripening. Zhang J; Hu Z; Yao Q; Guo X; Nguyen V; Li F; Chen G Sci Rep; 2018 Feb; 8(1):3413. PubMed ID: 29467500 [TBL] [Abstract][Full Text] [Related]
49. Xanthomonas type III effector XopD desumoylates tomato transcription factor SlERF4 to suppress ethylene responses and promote pathogen growth. Kim JG; Stork W; Mudgett MB Cell Host Microbe; 2013 Feb; 13(2):143-54. PubMed ID: 23414755 [TBL] [Abstract][Full Text] [Related]
50. A novel tomato SUMO E3 ligase, SlSIZ1, confers drought tolerance in transgenic tobacco. Zhang S; Zhuang K; Wang S; Lv J; Ma N; Meng Q J Integr Plant Biol; 2017 Feb; 59(2):102-117. PubMed ID: 27995772 [TBL] [Abstract][Full Text] [Related]
51. Tomato FRUITFULL homologs regulate fruit ripening via ethylene biosynthesis. Shima Y; Fujisawa M; Kitagawa M; Nakano T; Kimbara J; Nakamura N; Shiina T; Sugiyama J; Nakamura T; Kasumi T; Ito Y Biosci Biotechnol Biochem; 2014; 78(2):231-7. PubMed ID: 25036675 [TBL] [Abstract][Full Text] [Related]
52. Polymeric chains of SUMO-2 and SUMO-3 are conjugated to protein substrates by SAE1/SAE2 and Ubc9. Tatham MH; Jaffray E; Vaughan OA; Desterro JM; Botting CH; Naismith JH; Hay RT J Biol Chem; 2001 Sep; 276(38):35368-74. PubMed ID: 11451954 [TBL] [Abstract][Full Text] [Related]
53. The tomato I-3 gene: a novel gene for resistance to Fusarium wilt disease. Catanzariti AM; Lim GTT; Jones DA New Phytol; 2015 Jul; 207(1):106-118. PubMed ID: 25740416 [TBL] [Abstract][Full Text] [Related]
54. A cell-free approach to identify binding hotspots in plant immune receptors. Markou GC; Sarkar CA Sci Rep; 2022 Jan; 12(1):501. PubMed ID: 35017559 [TBL] [Abstract][Full Text] [Related]
55. Cloning of 1-aminocyclopropane-1-carboxylate (ACC) synthetase cDNA and the inhibition of fruit ripening by its antisense RNA in transgenic tomato plants. Liu C; Tian Y; Shen Q; Jiang H; Ju R; Yan T; Liu C; Mang K Chin J Biotechnol; 1998; 14(2):75-84. PubMed ID: 10196631 [TBL] [Abstract][Full Text] [Related]
56. Alterations in Nicotiana tabacum L. cv Xanthi Cell Membrane Function following Treatment with an Ethylene Biosynthesis-Inducing Endoxylanase. Bailey BA; Korcak RF; Anderson JD Plant Physiol; 1992 Oct; 100(2):749-55. PubMed ID: 16653055 [TBL] [Abstract][Full Text] [Related]
57. SlTPR1, a tomato tetratricopeptide repeat protein, interacts with the ethylene receptors NR and LeETR1, modulating ethylene and auxin responses and development. Lin Z; Arciga-Reyes L; Zhong S; Alexander L; Hackett R; Wilson I; Grierson D J Exp Bot; 2008; 59(15):4271-87. PubMed ID: 19036844 [TBL] [Abstract][Full Text] [Related]
58. The identification of ethene biosynthetic genes by gene silencing. Antisense transgenes, agrobacterium-mediated transformation, and the tomato ACC oxidase cDNA. Lycett GW Methods Mol Biol; 2000; 141():145-55. PubMed ID: 10820742 [No Abstract] [Full Text] [Related]
59. The small ubiquitin-like modifier (SUMO) protein modification system in Arabidopsis. Accumulation of SUMO1 and -2 conjugates is increased by stress. Kurepa J; Walker JM; Smalle J; Gosink MM; Davis SJ; Durham TL; Sung DY; Vierstra RD J Biol Chem; 2003 Feb; 278(9):6862-72. PubMed ID: 12482876 [TBL] [Abstract][Full Text] [Related]