These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 10505383)

  • 1. Predicting movement during anaesthesia by complexity analysis of electroencephalograms.
    Zhang XS; Roy RJ
    Med Biol Eng Comput; 1999 May; 37(3):327-34. PubMed ID: 10505383
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of response to incision using the mutual information of electroencephalograms during anaesthesia.
    Huang L; Yu P; Ju F; Cheng J
    Med Eng Phys; 2003 May; 25(4):321-7. PubMed ID: 12649017
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Classification of EEG signals using neural network and logistic regression.
    Subasi A; Erçelebi E
    Comput Methods Programs Biomed; 2005 May; 78(2):87-99. PubMed ID: 15848265
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design of a recognition system to predict movement during anesthesia.
    Sharma A; Roy RJ
    IEEE Trans Biomed Eng; 1997 Jun; 44(6):505-11. PubMed ID: 9151484
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Intraoperative EEG monitoring using a neural network].
    Eckert O; Werry C; Neulinger A; Pichlmayr I
    Biomed Tech (Berl); 1997 Apr; 42(4):78-84. PubMed ID: 9235113
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Automated EEG preprocessing during anaesthesia: new aspects using artificial neural networks.
    Jeleazcov C; Egner S; Bremer F; Schwilden H
    Biomed Tech (Berl); 2004 May; 49(5):125-31. PubMed ID: 15212197
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A set of EEG parameters to predict clinically anaesthetized state in humans for halothane anaesthesia.
    Kumar A; Anand S; Chari P; Yaddanapudi LN; Srivastava A
    J Med Eng Technol; 2007; 31(1):46-53. PubMed ID: 17365426
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A study of electroencephalographic descriptors and end-tidal concentration in estimating depth of anesthesia.
    Muthuswamy J; Sharma A
    J Clin Monit; 1996 Sep; 12(5):353-64. PubMed ID: 8934342
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Detecting movement-related EEG change by wavelet decomposition-based neural networks trained with single thumb movement.
    Chen CW; Lin CC; Ju MS
    Clin Neurophysiol; 2007 Apr; 118(4):802-14. PubMed ID: 17317306
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Channel selection and classification of electroencephalogram signals: an artificial neural network and genetic algorithm-based approach.
    Yang J; Singh H; Hines EL; Schlaghecken F; Iliescu DD; Leeson MS; Stocks NG
    Artif Intell Med; 2012 Jun; 55(2):117-26. PubMed ID: 22503644
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A neural-network-based detection of epilepsy.
    Nigam VP; Graupe D
    Neurol Res; 2004 Jan; 26(1):55-60. PubMed ID: 14977058
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Derived fuzzy knowledge model for estimating the depth of anesthesia.
    Zhang XS; Roy RJ
    IEEE Trans Biomed Eng; 2001 Mar; 48(3):312-23. PubMed ID: 11327499
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Depth of anaesthesia assessment based on adult electroencephalograph beta frequency band.
    Li T; Wen P
    Australas Phys Eng Sci Med; 2016 Sep; 39(3):773-81. PubMed ID: 27323760
    [TBL] [Abstract][Full Text] [Related]  

  • 14. EEG signal processing in anaesthesia. Use of a neural network technique for monitoring depth of anaesthesia.
    Ortolani O; Conti A; Di Filippo A; Adembri C; Moraldi E; Evangelisti A; Maggini M; Roberts SJ
    Br J Anaesth; 2002 May; 88(5):644-8. PubMed ID: 12067000
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The use of fuzzy integrals and bispectral analysis of the electroencephalogram to predict movement under anesthesia.
    Muthuswamy J; Roy RJ
    IEEE Trans Biomed Eng; 1999 Mar; 46(3):291-9. PubMed ID: 10097464
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Artificial neural network based approach to EEG signal simulation.
    Tomasevic NM; Neskovic AM; Neskovic NJ
    Int J Neural Syst; 2012 Jun; 22(3):1250008. PubMed ID: 23627624
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Algorithmic Complexity of EEG for Prognosis of Neurodegeneration in Idiopathic Rapid Eye Movement Behavior Disorder (RBD).
    Ruffini G; Ibañez D; Kroupi E; Gagnon JF; Montplaisir J; Postuma RB; Castellano M; Soria-Frisch A
    Ann Biomed Eng; 2019 Jan; 47(1):282-296. PubMed ID: 30167913
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A PCA aided cross-covariance scheme for discriminative feature extraction from EEG signals.
    Zarei R; He J; Siuly S; Zhang Y
    Comput Methods Programs Biomed; 2017 Jul; 146():47-57. PubMed ID: 28688489
    [TBL] [Abstract][Full Text] [Related]  

  • 19. EEG analysis via multiscale Lempel-Ziv complexity for seizure detection.
    Artan NS
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():4535-4538. PubMed ID: 28269285
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of wavelet transform and FFT methods in the analysis of EEG signals.
    Akin M
    J Med Syst; 2002 Jun; 26(3):241-7. PubMed ID: 12018610
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.