These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Targeting endogenous transforming growth factor beta receptor signaling in SMAD4-deficient human pancreatic carcinoma cells inhibits their invasive phenotype1. Subramanian G; Schwarz RE; Higgins L; McEnroe G; Chakravarty S; Dugar S; Reiss M Cancer Res; 2004 Aug; 64(15):5200-11. PubMed ID: 15289325 [TBL] [Abstract][Full Text] [Related]
4. Transforming growth factor beta signaling is disabled early in human endometrial carcinogenesis concomitant with loss of growth inhibition. Parekh TV; Gama P; Wen X; Demopoulos R; Munger JS; Carcangiu ML; Reiss M; Gold LI Cancer Res; 2002 May; 62(10):2778-90. PubMed ID: 12019154 [TBL] [Abstract][Full Text] [Related]
5. Systematic analysis of the TGF-beta/Smad signalling pathway in the rhabdomyosarcoma cell line RD. Wang H; Yang GH; Bu H; Zhou Q; Guo LX; Wang SL; Ye L Int J Exp Pathol; 2003 Jun; 84(3):153-63. PubMed ID: 12974945 [TBL] [Abstract][Full Text] [Related]
6. The transforming growth factor-beta/SMAD signaling pathway is present and functional in human mesangial cells. Poncelet AC; de Caestecker MP; Schnaper HW Kidney Int; 1999 Oct; 56(4):1354-65. PubMed ID: 10504488 [TBL] [Abstract][Full Text] [Related]
7. TGF-beta-induced nuclear localization of Smad2 and Smad3 in Smad4 null cancer cell lines. Fink SP; Mikkola D; Willson JK; Markowitz S Oncogene; 2003 Mar; 22(9):1317-23. PubMed ID: 12618756 [TBL] [Abstract][Full Text] [Related]
8. A role for human MUC4 mucin gene, the ErbB2 ligand, as a target of TGF-beta in pancreatic carcinogenesis. Jonckheere N; Perrais M; Mariette C; Batra SK; Aubert JP; Pigny P; Van Seuningen I Oncogene; 2004 Jul; 23(34):5729-38. PubMed ID: 15184872 [TBL] [Abstract][Full Text] [Related]
9. Expression profile of agonistic Smads in human breast cancer cells: absence of regulation by estrogens. Pouliot F; Labrie C Int J Cancer; 1999 Mar; 81(1):98-103. PubMed ID: 10077159 [TBL] [Abstract][Full Text] [Related]
10. Disruption of the antiproliferative TGF-beta signaling pathways in human pancreatic cancer cells. Villanueva A; García C; Paules AB; Vicente M; Megías M; Reyes G; de Villalonga P; Agell N; Lluís F; Bachs O; Capellá G Oncogene; 1998 Oct; 17(15):1969-78. PubMed ID: 9788440 [TBL] [Abstract][Full Text] [Related]
11. Transforming growth factor-beta1-dependent activation of Smad2/3 and up-regulation of PAI-1 expression is negatively regulated by Src in SKOV-3 human ovarian cancer cells. Wakahara K; Kobayashi H; Yagyu T; Matsuzaki H; Kondo T; Kurita N; Sekino H; Inagaki K; Suzuki M; Kanayama N; Terao T J Cell Biochem; 2004 Oct; 93(3):437-53. PubMed ID: 15372629 [TBL] [Abstract][Full Text] [Related]
12. Overexpression of Smad2 reveals its concerted action with Smad4 in regulating TGF-beta-mediated epidermal homeostasis. Ito Y; Sarkar P; Mi Q; Wu N; Bringas P; Liu Y; Reddy S; Maxson R; Deng C; Chai Y Dev Biol; 2001 Aug; 236(1):181-94. PubMed ID: 11456453 [TBL] [Abstract][Full Text] [Related]
13. Soluble type II transforming growth factor-beta (TGF-beta) receptor inhibits TGF-beta signaling in COLO-357 pancreatic cancer cells in vitro and attenuates tumor formation. Rowland-Goldsmith MA; Maruyama H; Kusama T; Ralli S; Korc M Clin Cancer Res; 2001 Sep; 7(9):2931-40. PubMed ID: 11555612 [TBL] [Abstract][Full Text] [Related]
14. TGF-beta signaling in colon cancer cells. Li F; Cao Y; Townsend CM; Ko TC World J Surg; 2005 Mar; 29(3):306-11. PubMed ID: 15711891 [TBL] [Abstract][Full Text] [Related]
15. Augmented cytoplasmic Smad4 induces acceleration of TGF-beta1 signaling in renal tubulointerstitial cells of hereditary nephrotic ICGN mice with chronic renal fibrosis; possible role for myofibroblastic differentiation. Goto Y; Manabe N; Uchio-Yamada K; Yamaguchi-Yamada M; Inoue N; Yamamoto Y; Ogura A; Nagano N; Miyamoto H Cell Tissue Res; 2004 Feb; 315(2):209-21. PubMed ID: 14615933 [TBL] [Abstract][Full Text] [Related]
16. Induction and expression of betaig-h3 in pancreatic cancer cells. Schneider D; Kleeff J; Berberat PO; Zhu Z; Korc M; Friess H; Büchler MW Biochim Biophys Acta; 2002 Oct; 1588(1):1-6. PubMed ID: 12379307 [TBL] [Abstract][Full Text] [Related]
17. Transforming growth factor-beta1 activates interleukin-6 expression in prostate cancer cells through the synergistic collaboration of the Smad2, p38-NF-kappaB, JNK, and Ras signaling pathways. Park JI; Lee MG; Cho K; Park BJ; Chae KS; Byun DS; Ryu BK; Park YK; Chi SG Oncogene; 2003 Jul; 22(28):4314-32. PubMed ID: 12853969 [TBL] [Abstract][Full Text] [Related]
18. KLF11 mediates a critical mechanism in TGF-beta signaling that is inactivated by Erk-MAPK in pancreatic cancer cells. Ellenrieder V; Buck A; Harth A; Jungert K; Buchholz M; Adler G; Urrutia R; Gress TM Gastroenterology; 2004 Aug; 127(2):607-20. PubMed ID: 15300592 [TBL] [Abstract][Full Text] [Related]
19. Defective transforming growth factor beta signaling pathway in head and neck squamous cell carcinoma as evidenced by the lack of expression of activated Smad2. Muro-Cacho CA; Rosario-Ortiz K; Livingston S; Muñoz-Antonia T Clin Cancer Res; 2001 Jun; 7(6):1618-26. PubMed ID: 11410498 [TBL] [Abstract][Full Text] [Related]
20. Transfection of the type I TGF-beta receptor restores TGF-beta responsiveness in pancreatic cancer. Wagner M; Kleeff J; Lopez ME; Bockman I; Massaqué J; Korc M Int J Cancer; 1998 Oct; 78(2):255-60. PubMed ID: 9754660 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]