These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 10506085)

  • 1. Chandelier cells and epilepsy.
    DeFelipe J
    Brain; 1999 Oct; 122 ( Pt 10)():1807-22. PubMed ID: 10506085
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Histopathology and reorganization of chandelier cells in the human epileptic sclerotic hippocampus.
    Arellano JI; Muñoz A; Ballesteros-Yáñez I; Sola RG; DeFelipe J
    Brain; 2004 Jan; 127(Pt 1):45-64. PubMed ID: 14534159
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Chandelier cells and their possible implication in epilepsy].
    de Felipe J
    Neurologia; 1999 May; 14 Suppl 3():7-19. PubMed ID: 10379162
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A study of SMI 32-stained pyramidal cells, parvalbumin-immunoreactive chandelier cells, and presumptive thalamocortical axons in the human temporal neocortex.
    Del Río MR; DeFelipe J
    J Comp Neurol; 1994 Apr; 342(3):389-408. PubMed ID: 7517410
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inhibitory neurons in the human epileptogenic temporal neocortex. An immunocytochemical study.
    Marco P; Sola RG; Pulido P; Alijarde MT; Sánchez A; Ramón y Cajal S; DeFelipe J
    Brain; 1996 Aug; 119 ( Pt 4)():1327-47. PubMed ID: 8813295
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synaptic connections of axo-axonic (chandelier) cells in human epileptic temporal cortex.
    Kisvárday ZF; Adams CB; Smith AD
    Neuroscience; 1986 Dec; 19(4):1179-86. PubMed ID: 3029627
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surviving CA1 pyramidal cells receive intact perisomatic inhibitory input in the human epileptic hippocampus.
    Wittner L; Eross L; Czirják S; Halász P; Freund TF; Maglóczky Z
    Brain; 2005 Jan; 128(Pt 1):138-52. PubMed ID: 15548550
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chandelier cell axons identified by parvalbumin-immunoreactivity in the normal human temporal cortex and in Alzheimer's disease.
    Fonseca M; Soriano E; Ferrer I; Martinez A; Tuñon T
    Neuroscience; 1993 Aug; 55(4):1107-16. PubMed ID: 8232900
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Densities of parvalbumin-immunoreactive neurons in non-malformed hippocampal sclerosis-temporal neocortex and in cortical dysplasias.
    Zamecnik J; Krsek P; Druga R; Marusic P; Benes V; Tichy M; Komarek V
    Brain Res Bull; 2006 Feb; 68(6):474-81. PubMed ID: 16459206
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Loss of GABAergic neurons in the subiculum and its functional implications in temporal lobe epilepsy.
    Knopp A; Frahm C; Fidzinski P; Witte OW; Behr J
    Brain; 2008 Jun; 131(Pt 6):1516-27. PubMed ID: 18504292
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Axon terminals of GABAergic chandelier cells are lost at epileptic foci.
    Ribak CE
    Brain Res; 1985 Feb; 326(2):251-60. PubMed ID: 2982461
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Architectural (Type IA) focal cortical dysplasia and parvalbumin immunostaining in temporal lobe epilepsy.
    Garbelli R; Meroni A; Magnaghi G; Beolchi MS; Ferrario A; Tassi L; Bramerio M; Spreafico R
    Epilepsia; 2006 Jun; 47(6):1074-8. PubMed ID: 16822257
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Loss of constitutive functional γ-aminobutyric acid type A-B receptor crosstalk in layer 5 pyramidal neurons of human epileptic temporal cortex.
    Martinello K; Sciaccaluga M; Morace R; Mascia A; Arcella A; Esposito V; Fucile S
    Epilepsia; 2018 Feb; 59(2):449-459. PubMed ID: 29283181
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Selective changes in the microorganization of the human epileptogenic neocortex revealed by parvalbumin immunoreactivity.
    DeFelipe J; Garcia Sola R; Marco P; del Río MR; Pulido P; Ramón y Cajal S
    Cereb Cortex; 1993; 3(1):39-48. PubMed ID: 7679938
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Loss of inhibitory synapses on the soma and axon initial segment of pyramidal cells in human epileptic peritumoural neocortex: implications for epilepsy.
    Marco P; Sola RG; Ramón y Cajal S; DeFelipe J
    Brain Res Bull; 1997; 44(1):47-66. PubMed ID: 9288831
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Altered synaptic circuitry in the human temporal neocortex removed from epileptic patients.
    Marco P; DeFelipe J
    Exp Brain Res; 1997 Mar; 114(1):1-10. PubMed ID: 9125446
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Alterations of hippocampal GAbaergic system contribute to development of spontaneous recurrent seizures in the rat lithium-pilocarpine model of temporal lobe epilepsy.
    André V; Marescaux C; Nehlig A; Fritschy JM
    Hippocampus; 2001; 11(4):452-68. PubMed ID: 11530850
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Early loss of interneurons and delayed subunit-specific changes in GABA(A)-receptor expression in a mouse model of mesial temporal lobe epilepsy.
    Bouilleret V; Loup F; Kiener T; Marescaux C; Fritschy JM
    Hippocampus; 2000; 10(3):305-24. PubMed ID: 10902900
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regional variability and postsynaptic targets of chandelier cells in the hippocampal formation of the rat.
    Martínez A; Lübke J; Del Río JA; Soriano E; Frotscher M
    J Comp Neurol; 1996 Dec; 376(1):28-44. PubMed ID: 8946282
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Axonal sprouting of GABAergic interneurons in temporal lobe epilepsy.
    Bausch SB
    Epilepsy Behav; 2005 Nov; 7(3):390-400. PubMed ID: 16198153
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.