BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

251 related articles for article (PubMed ID: 10506098)

  • 1. Mapping the network for planning: a correlational PET activation study with the Tower of London task.
    Dagher A; Owen AM; Boecker H; Brooks DJ
    Brain; 1999 Oct; 122 ( Pt 10)():1973-87. PubMed ID: 10506098
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Motor task difficulty and brain activity: investigation of goal-directed reciprocal aiming using positron emission tomography.
    Winstein CJ; Grafton ST; Pohl PS
    J Neurophysiol; 1997 Mar; 77(3):1581-94. PubMed ID: 9084621
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Positron emission tomography study of voluntary saccadic eye movements and spatial working memory.
    Sweeney JA; Mintun MA; Kwee S; Wiseman MB; Brown DL; Rosenberg DR; Carl JR
    J Neurophysiol; 1996 Jan; 75(1):454-68. PubMed ID: 8822570
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Brain areas involved in the control of speed during a motor sequence of the foot: real movement versus mental imagery.
    Sauvage C; Jissendi P; Seignan S; Manto M; Habas C
    J Neuroradiol; 2013 Oct; 40(4):267-80. PubMed ID: 23433722
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamic functional changes associated with cognitive skill learning of an adapted version of the Tower of London task.
    Beauchamp MH; Dagher A; Aston JA; Doyon J
    Neuroimage; 2003 Nov; 20(3):1649-60. PubMed ID: 14642475
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A H(2)(15)O positron emission tomography study on mental imagery of movement sequences--the effect of modulating sequence length and direction.
    Boecker H; Ceballos-Baumann AO; Bartenstein P; Dagher A; Forster K; Haslinger B; Brooks DJ; Schwaiger M; Conrad B
    Neuroimage; 2002 Oct; 17(2):999-1009. PubMed ID: 12377173
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional anatomy of the mental representation of upper extremity movements in healthy subjects.
    Stephan KM; Fink GR; Passingham RE; Silbersweig D; Ceballos-Baumann AO; Frith CD; Frackowiak RS
    J Neurophysiol; 1995 Jan; 73(1):373-86. PubMed ID: 7714579
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Motor subcircuits mediating the control of movement velocity: a PET study.
    Turner RS; Grafton ST; Votaw JR; Delong MR; Hoffman JM
    J Neurophysiol; 1998 Oct; 80(4):2162-76. PubMed ID: 9772269
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Frontal and parietal networks for conditional motor learning: a positron emission tomography study.
    Deiber MP; Wise SP; Honda M; Catalan MJ; Grafman J; Hallett M
    J Neurophysiol; 1997 Aug; 78(2):977-91. PubMed ID: 9307128
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Visuomotor transformations for reaching to memorized targets: a PET study.
    Lacquaniti F; Perani D; Guigon E; Bettinardi V; Carrozzo M; Grassi F; Rossetti Y; Fazio F
    Neuroimage; 1997 Feb; 5(2):129-46. PubMed ID: 9345543
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cerebral structures participating in motor preparation in humans: a positron emission tomography study.
    Deiber MP; Ibañez V; Sadato N; Hallett M
    J Neurophysiol; 1996 Jan; 75(1):233-47. PubMed ID: 8822554
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of movement frequency on cerebral activation: a positron emission tomography study.
    Jenkins IH; Passingham RE; Brooks DJ
    J Neurol Sci; 1997 Oct; 151(2):195-205. PubMed ID: 9349676
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intracerebral ERD/ERS in voluntary movement and in cognitive visuomotor task.
    Rektor I; Sochůrková D; Bocková M
    Prog Brain Res; 2006; 159():311-30. PubMed ID: 17071240
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Self-initiated versus externally triggered movements. I. An investigation using measurement of regional cerebral blood flow with PET and movement-related potentials in normal and Parkinson's disease subjects.
    Jahanshahi M; Jenkins IH; Brown RG; Marsden CD; Passingham RE; Brooks DJ
    Brain; 1995 Aug; 118 ( Pt 4)():913-33. PubMed ID: 7655888
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Meta-analysis on the neural basis of planning: Activation likelihood estimation of functional brain imaging results in the Tower of London task.
    Nitschke K; Köstering L; Finkel L; Weiller C; Kaller CP
    Hum Brain Mapp; 2017 Jan; 38(1):396-413. PubMed ID: 27627877
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of the human rostral supplementary motor area and the basal ganglia in motor sequence control: investigations with H2 15O PET.
    Boecker H; Dagher A; Ceballos-Baumann AO; Passingham RE; Samuel M; Friston KJ; Poline J; Dettmers C; Conrad B; Brooks DJ
    J Neurophysiol; 1998 Feb; 79(2):1070-80. PubMed ID: 9463462
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Relation between cerebral activity and force in the motor areas of the human brain.
    Dettmers C; Fink GR; Lemon RN; Stephan KM; Passingham RE; Silbersweig D; Holmes A; Ridding MC; Brooks DJ; Frackowiak RS
    J Neurophysiol; 1995 Aug; 74(2):802-15. PubMed ID: 7472384
    [TBL] [Abstract][Full Text] [Related]  

  • 18. PET study of pointing with visual feedback of moving hands.
    Inoue K; Kawashima R; Satoh K; Kinomura S; Goto R; Koyama M; Sugiura M; Ito M; Fukuda H
    J Neurophysiol; 1998 Jan; 79(1):117-25. PubMed ID: 9425182
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A functional MRI study of motor dysfunction in Friedreich's ataxia.
    Akhlaghi H; Corben L; Georgiou-Karistianis N; Bradshaw J; Delatycki MB; Storey E; Egan GF
    Brain Res; 2012 Aug; 1471():138-54. PubMed ID: 22771856
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cortical areas with enhanced activation during object-centred spatial information processing. A PET study.
    Honda M; Wise SP; Weeks RA; Deiber MP; Hallett M
    Brain; 1998 Nov; 121 ( Pt 11)():2145-58. PubMed ID: 9827774
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.