These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

265 related articles for article (PubMed ID: 10506126)

  • 1. Chemical mechanism of ATP synthase. Magnesium plays a pivotal role in formation of the transition state where ATP is synthesized from ADP and inorganic phosphate.
    Ko YH; Hong S; Pedersen PL
    J Biol Chem; 1999 Oct; 274(41):28853-6. PubMed ID: 10506126
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Novel insights into the chemical mechanism of ATP synthase. Evidence that in the transition state the gamma-phosphate of ATP is near the conserved alanine within the P-loop of the beta-subunit.
    Ko YH; Bianchet M; Amzel LM; Pedersen PL
    J Biol Chem; 1997 Jul; 272(30):18875-81. PubMed ID: 9228065
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mitochondrial ATP synthase. Crystal structure of the catalytic F1 unit in a vanadate-induced transition-like state and implications for mechanism.
    Chen C; Saxena AK; Simcoke WN; Garboczi DN; Pedersen PL; Ko YH
    J Biol Chem; 2006 May; 281(19):13777-13783. PubMed ID: 16531409
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mitochondrial ATP synthase catalytic mechanism: a novel visual comparative structural approach emphasizes pivotal roles for Mg²⁺ and P-loop residues in making ATP.
    Blum DJ; Ko YH; Pedersen PL
    Biochemistry; 2012 Feb; 51(7):1532-46. PubMed ID: 22243519
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The transition-like state and Pi entrance into the catalytic a subunit of the biological engine A-ATP synthase.
    Manimekalai MS; Kumar A; Jeyakanthan J; Grüber G
    J Mol Biol; 2011 May; 408(4):736-54. PubMed ID: 21396943
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Catalytic site forms and controls in ATP synthase catalysis.
    Boyer PD
    Biochim Biophys Acta; 2000 May; 1458(2-3):252-62. PubMed ID: 10838041
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ATP synthase: a tentative structural model.
    Engelbrecht S; Junge W
    FEBS Lett; 1997 Sep; 414(3):485-91. PubMed ID: 9323021
    [TBL] [Abstract][Full Text] [Related]  

  • 8. X-ray structure of the magnesium(II).ADP.vanadate complex of the Dictyostelium discoideum myosin motor domain to 1.9 A resolution.
    Smith CA; Rayment I
    Biochemistry; 1996 Apr; 35(17):5404-17. PubMed ID: 8611530
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The epsilon subunit of bacterial and chloroplast F(1)F(0) ATPases. Structure, arrangement, and role of the epsilon subunit in energy coupling within the complex.
    Capaldi RA; Schulenberg B
    Biochim Biophys Acta; 2000 May; 1458(2-3):263-9. PubMed ID: 10838042
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The 2.8-A structure of rat liver F1-ATPase: configuration of a critical intermediate in ATP synthesis/hydrolysis.
    Bianchet MA; Hullihen J; Pedersen PL; Amzel LM
    Proc Natl Acad Sci U S A; 1998 Sep; 95(19):11065-70. PubMed ID: 9736690
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crystallographic and enzymatic insights into the mechanisms of Mg-ADP inhibition in the A
    Singh D; Grüber G
    J Struct Biol; 2018 Jan; 201(1):26-35. PubMed ID: 29074108
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Important subunit interactions in the chloroplast ATP synthase.
    Richter ML; Hein R; Huchzermeyer B
    Biochim Biophys Acta; 2000 May; 1458(2-3):326-42. PubMed ID: 10838048
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inhibitory Mg-ADP-fluoroaluminate complexes bound to catalytic sites of F(1)-ATPases: are they ground-state or transition-state analogs?
    Allison WS; Ren H; Dou C
    J Bioenerg Biomembr; 2000 Oct; 32(5):531-8. PubMed ID: 15254389
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The participation of metals in the mechanism of the F(1)-ATPase.
    Frasch WD
    Biochim Biophys Acta; 2000 May; 1458(2-3):310-25. PubMed ID: 10838047
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The rotary binding change mechanism of ATP synthases.
    Cross RL
    Biochim Biophys Acta; 2000 May; 1458(2-3):270-5. PubMed ID: 10838043
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Relevance of the conserved histidine and asparagine residues in the phosphate-binding loop of the nucleotide binding subunit B of A₁A₀ ATP synthases.
    Tadwal VS; Sundararaman L; Manimekalai MS; Hunke C; Grüber G
    J Struct Biol; 2012 Dec; 180(3):509-18. PubMed ID: 23063756
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Amino Acid Residues β139, β189, and β319 Modulate ADP-Inhibition in Escherichia coli H+-F
    Lapashina AS; Shugaeva TE; Berezina KM; Kholina TD; Feniouk BA
    Biochemistry (Mosc); 2019 Apr; 84(4):407-415. PubMed ID: 31228932
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mitochondrial F(0)F(1) ATP synthase. Subunit regions on the F1 motor shielded by F(0), Functional significance, and evidence for an involvement of the unique F(0) subunit F(6).
    Ko YH; Hullihen J; Hong S; Pedersen PL
    J Biol Chem; 2000 Oct; 275(42):32931-9. PubMed ID: 10887193
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ADP-Inhibition of H+-F
    Lapashina AS; Feniouk BA
    Biochemistry (Mosc); 2018 Oct; 83(10):1141-1160. PubMed ID: 30472953
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Organisation of the yeast ATP synthase F(0):a study based on cysteine mutants, thiol modification and cross-linking reagents.
    Velours J; Paumard P; Soubannier V; Spannagel C; Vaillier J; Arselin G; Graves PV
    Biochim Biophys Acta; 2000 May; 1458(2-3):443-56. PubMed ID: 10838057
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.