These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 10506759)

  • 41. The actin cytoskeleton in normal and pathological cell motility.
    Lambrechts A; Van Troys M; Ampe C
    Int J Biochem Cell Biol; 2004 Oct; 36(10):1890-909. PubMed ID: 15203104
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Design, synthesis, and biological evaluation of simplified side chain hybrids of the potent actin binding polyketides rhizopodin and bistramide.
    Herkommer D; Dreisigacker S; Sergeev G; Sasse F; Gohlke H; Menche D
    ChemMedChem; 2015 Mar; 10(3):470-89. PubMed ID: 25641798
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Latrunculins: novel marine toxins that disrupt microfilament organization in cultured cells.
    Spector I; Shochet NR; Kashman Y; Groweiss A
    Science; 1983 Feb; 219(4584):493-5. PubMed ID: 6681676
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Actin-depolymerizing effect of dimeric macrolides, bistheonellide A and swinholide A.
    Saito SY; Watabe S; Ozaki H; Kobayashi M; Suzuki T; Kobayashi H; Fusetani N; Karaki H
    J Biochem; 1998 Apr; 123(4):571-8. PubMed ID: 9538245
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Swinholide A is a microfilament disrupting marine toxin that stabilizes actin dimers and severs actin filaments.
    Bubb MR; Spector I; Bershadsky AD; Korn ED
    J Biol Chem; 1995 Feb; 270(8):3463-6. PubMed ID: 7876075
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Structures of microfilament destabilizing toxins bound to actin provide insight into toxin design and activity.
    Allingham JS; Zampella A; D'Auria MV; Rayment I
    Proc Natl Acad Sci U S A; 2005 Oct; 102(41):14527-32. PubMed ID: 16192358
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Misakinolide A is a marine macrolide that caps but does not sever filamentous actin.
    Terry DR; Spector I; Higa T; Bubb MR
    J Biol Chem; 1997 Mar; 272(12):7841-5. PubMed ID: 9065449
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Marine natural products. XXXI. Structure-activity correlation of a potent cytotoxic dimeric macrolide swinholide A, from the Okinawan marine sponge Theonella swinhoei, and its isomers.
    Kobayashi M; Kawazoe K; Okamoto T; Sasaki T; Kitagawa I
    Chem Pharm Bull (Tokyo); 1994 Jan; 42(1):19-26. PubMed ID: 8124763
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Macrolides: From Toxins to Therapeutics.
    Lenz KD; Klosterman KE; Mukundan H; Kubicek-Sutherland JZ
    Toxins (Basel); 2021 May; 13(5):. PubMed ID: 34065929
    [TBL] [Abstract][Full Text] [Related]  

  • 50. In vitro anti-cancer effects of the actin-binding natural compound rhizopodin.
    Zhang S; Menche D; Zahler S; Vollmar AM; Liebl J; Förster F
    Pharmazie; 2015 Sep; 70(9):610-5. PubMed ID: 26492647
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Lactone ring of pectenotoxins: a key factor for their activity on cytoskeletal dynamics.
    Ares IR; Louzao MC; Espiña B; Vieytes MR; Miles CO; Yasumoto T; Botana L
    Cell Physiol Biochem; 2007; 19(5-6):283-92. PubMed ID: 17495468
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Swinholide J, a potent cytotoxin from the marine sponge Theonella swinhoei.
    Marino S; Festa C; D'Auria MV; Cresteil T; Debitus C; Zampella A
    Mar Drugs; 2011; 9(6):1133-1141. PubMed ID: 21747751
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Actin-targeting natural products: structures, properties and mechanisms of action.
    Allingham JS; Klenchin VA; Rayment I
    Cell Mol Life Sci; 2006 Sep; 63(18):2119-34. PubMed ID: 16909206
    [TBL] [Abstract][Full Text] [Related]  

  • 54. [Actin depolymerizing action by marine toxin, pectenotoxin-2].
    Hori M; Matsuura Y; Yoshimoto R; Ozaki H; Yasumoto T; Karaki H
    Nihon Yakurigaku Zasshi; 1999 Oct; 114 Suppl 1():225P-229P. PubMed ID: 10629885
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Structure-activity relationship studies on an antitumor marine macrolide using aplyronine a-swinholide A hybrid.
    Ohyoshi T; Takano A; Kikuchi I; Ogura T; Namiki M; Miyazaki Y; Hirano T; Konishi S; Ebihara Y; Takeno K; Hayakawa I; Kigoshi H
    Org Biomol Chem; 2022 Apr; 20(14):2922-2938. PubMed ID: 35322840
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Impact of marine drugs on cytoskeleton-mediated reproductive events.
    Silvestre F; Tosti E
    Mar Drugs; 2010 Mar; 8(4):881-915. PubMed ID: 20479959
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Introduction to the histology and cell biology of the actin cytoskeleton.
    Gettemans J
    Microsc Res Tech; 1999 Oct; 47(1):1-2. PubMed ID: 10506757
    [No Abstract]   [Full Text] [Related]  

  • 58. Modular complexes that regulate actin assembly in budding yeast.
    Goode BL; Rodal AA
    Curr Opin Microbiol; 2001 Dec; 4(6):703-12. PubMed ID: 11731323
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Effects of ulapualide A and synthetic macrolide analogues on actin dynamics and gene regulation.
    Vincent E; Saxton J; Baker-Glenn C; Moal I; Hirst JD; Pattenden G; Shaw PE
    Cell Mol Life Sci; 2007 Feb; 64(4):487-97. PubMed ID: 17279315
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A new theoretical approach to analyze complex processes in cytoskeleton proteins.
    Li X; Kolomeisky AB
    J Phys Chem B; 2014 Mar; 118(11):2966-72. PubMed ID: 24571190
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.