BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

281 related articles for article (PubMed ID: 10506943)

  • 21. In vitro and in vivo comparison of sulfur donors as antidotes to acute cyanide intoxication.
    Baskin SI; Porter DW; Rockwood GA; Romano JA; Patel HC; Kiser RC; Cook CM; Ternay AL
    J Appl Toxicol; 1999; 19(3):173-83. PubMed ID: 10362268
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Involvement of Pseudomonas aeruginosa rhodanese in protection from cyanide toxicity.
    Cipollone R; Frangipani E; Tiburzi F; Imperi F; Ascenzi P; Visca P
    Appl Environ Microbiol; 2007 Jan; 73(2):390-8. PubMed ID: 17098912
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effects of protein-free diet and food deprivation on hepatic rhodanese activity, serum proteins and acute cyanide lethality in mice.
    Rutkowski JV; Roebuck BD; Smith RP
    J Nutr; 1985 Jan; 115(1):132-7. PubMed ID: 3855311
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The cyanide-metabolizing enzyme rhodanese in rat nasal respiratory and olfactory mucosa.
    Dahl AR
    Toxicol Lett; 1989 Feb; 45(2-3):199-205. PubMed ID: 2919401
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Protective effect of rhodanese on the respiration of isolated mitochondria intoxicated with cyanide.
    Auriga M; Koj A
    Bull Acad Pol Sci Biol; 1975; 23(5):305-10. PubMed ID: 1139363
    [No Abstract]   [Full Text] [Related]  

  • 26. Glutaredoxin-like protein (GLP)-a novel bacteria sulfurtransferase that protects cells against cyanide and oxidative stresses.
    de Paula CP; Dos Santos MC; Tairum CA; Breyer CA; Toledo-Silva G; Toyama MH; Mori GM; de Oliveira MA
    Appl Microbiol Biotechnol; 2020 Jun; 104(12):5477-5492. PubMed ID: 32307572
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The inhibition of rhodanese by lipoate and iron-sulfur proteins.
    Pagani S; Bonomi F; Cerletti P
    Biochim Biophys Acta; 1983 Jan; 742(1):116-21. PubMed ID: 6402017
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Encapsulation of thiosulfate: cyanide sulfurtransferase by mouse erythrocytes.
    Leung P; Ray LE; Sander C; Way JL; Sylvester DM; Way JL
    Toxicol Appl Pharmacol; 1986 Mar; 83(1):101-7. PubMed ID: 3456651
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Pattern of enzyme changes in rabbits administered linamarin or potassium cyanide.
    Padmaja G; Panikkar KR
    Indian J Exp Biol; 1989 Jun; 27(6):551-5. PubMed ID: 2555300
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mycobacterium tuberculosis CysA2 is a dual sulfurtransferase with activity against thiosulfate and 3-mercaptopyruvate and interacts with mammalian cells.
    Meza AN; Cambui CCN; Moreno ACR; Fessel MR; Balan A
    Sci Rep; 2019 Nov; 9(1):16791. PubMed ID: 31727914
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Structural and functional characterization of sulfurtransferase from Frondihabitans sp. PAMC28461.
    Do H; Nguyen DL; Ahn YY; Nam Y; Kang Y; Oh H; Hwang J; Han SJ; Kim K; Lee JH
    PLoS One; 2024; 19(3):e0298999. PubMed ID: 38526988
    [TBL] [Abstract][Full Text] [Related]  

  • 32. In-vitro mercaptopyruvate sulfurtransferase species comparison in humans and common laboratory animals.
    Moeller BM; Crankshaw DL; Briggs J; Nagasawa HT; Patterson SE
    Toxicol Lett; 2017 May; 274():64-68. PubMed ID: 28412453
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dietary resources shape the adaptive changes of cyanide detoxification function in giant panda (Ailuropoda melanoleuca).
    Huang H; Yie S; Liu Y; Wang C; Cai Z; Zhang W; Lan J; Huang X; Luo L; Cai K; Hou R; Zhang Z
    Sci Rep; 2016 Oct; 6():34700. PubMed ID: 27703267
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Modifiers of mercaptopyruvate sulfurtransferase catalyzed conversion of cyanide to thiocyanate in vitro.
    Wing DA; Baskin SI
    J Biochem Toxicol; 1992; 7(2):65-72. PubMed ID: 1404244
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Novel Characterization of Antioxidant Enzyme, 3-Mercaptopyruvate Sulfurtransferase-Knockout Mice: Overexpression of the Evolutionarily-Related Enzyme Rhodanese.
    Nagahara N; Tanaka M; Tanaka Y; Ito T
    Antioxidants (Basel); 2019 May; 8(5):. PubMed ID: 31052467
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Differentiation of the roles of sulfide oxidase and rhodanese in the detoxification of sulfide by the colonic mucosa.
    Wilson K; Mudra M; Furne J; Levitt M
    Dig Dis Sci; 2008 Jan; 53(1):277-83. PubMed ID: 17551834
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Tissue-specific bioenergetic effects and increased enzymatic activities following acute sublethal peroral exposure to cyanide in the mallard duck.
    Ma J; Pritsos CA
    Toxicol Appl Pharmacol; 1997 Feb; 142(2):297-302. PubMed ID: 9070352
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The crystal structure of a sulfurtransferase from Azotobacter vinelandii highlights the evolutionary relationship between the rhodanese and phosphatase enzyme families.
    Bordo D; Deriu D; Colnaghi R; Carpen A; Pagani S; Bolognesi M
    J Mol Biol; 2000 May; 298(4):691-704. PubMed ID: 10788330
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Interaction of rhodanese with intermediates of oxygen reduction.
    Cannella C; Berni R
    FEBS Lett; 1983 Oct; 162(1):180-4. PubMed ID: 6311631
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The inactivation of rhodanese by nitrite and inhibition by other anions in vitro.
    Alexander K; Procell LR; Kirby SD; Baskin SI
    J Biochem Toxicol; 1989; 4(1):29-33. PubMed ID: 2769694
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.