These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 10506973)

  • 1. Construction of line-scan confocal microscope for physiological recording.
    Callamaras N; Parker I
    Methods Enzymol; 1999; 307():152-69. PubMed ID: 10506973
    [No Abstract]   [Full Text] [Related]  

  • 2. Radial localization of inositol 1,4,5-trisphosphate-sensitive Ca2+ release sites in Xenopus oocytes resolved by axial confocal linescan imaging.
    Callamaras N; Parker I
    J Gen Physiol; 1999 Feb; 113(2):199-213. PubMed ID: 9925819
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intracellular waves observed by confocal microscopy from Xenopus oocytes.
    Clapham DE; Lechleiter JD; Girard S
    Adv Second Messenger Phosphoprotein Res; 1993; 28():161-5. PubMed ID: 8398398
    [No Abstract]   [Full Text] [Related]  

  • 4. Expression of green fluorescent protein and inositol 1,4,5-triphosphate receptor in Xenopus laevis oocytes.
    Miyawaki A; Matheson JM; Sayers LG; Muto A; Michikawa T; Furuichi T; Mikoshiba K
    Methods Enzymol; 1999; 302():225-33. PubMed ID: 12876775
    [No Abstract]   [Full Text] [Related]  

  • 5. Quantifying calcium fluxes underlying calcium puffs in Xenopus laevis oocytes.
    Bruno L; Solovey G; Ventura AC; Dargan S; Dawson SP
    Cell Calcium; 2010 Mar; 47(3):273-86. PubMed ID: 20097419
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Custom-made modification of a commercial confocal microscope to photolyze caged compounds using the conventional illumination module and its application to the observation of Inositol 1,4,5-trisphosphate-mediated calcium signals.
    Sigaut L; Barella M; Espada R; Ponce ML; Dawson SP
    J Biomed Opt; 2011 Jun; 16(6):066013. PubMed ID: 21721814
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A high-resolution, confocal laser-scanning microscope and flash photolysis system for physiological studies.
    Parker I; Callamaras N; Wier WG
    Cell Calcium; 1997 Jun; 21(6):441-52. PubMed ID: 9223680
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Imaging Ca2+ signals in Xenopus oocytes.
    Dargan SL; Demuro A; Parker I
    Methods Mol Biol; 2006; 322():103-19. PubMed ID: 16739719
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Acceleration of intracellular calcium waves in Xenopus oocytes by calcium influx.
    Girard S; Clapham D
    Science; 1993 Apr; 260(5105):229-32. PubMed ID: 8385801
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetics of elementary Ca2+ puffs evoked in Xenopus oocytes by different Ins(1,4,5)P3 receptor agonists.
    Marchant JS; Parker I
    Biochem J; 1998 Sep; 334 ( Pt 3)(Pt 3):505-9. PubMed ID: 9729454
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The type II inositol 1,4,5-trisphosphate receptor can trigger Ca2+ waves in rat hepatocytes.
    Hirata K; Pusl T; O'Neill AF; Dranoff JA; Nathanson MH
    Gastroenterology; 2002 Apr; 122(4):1088-100. PubMed ID: 11910359
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ca2+ waves require sequential activation of inositol trisphosphate receptors and ryanodine receptors in pancreatic acini.
    Leite MF; Burgstahler AD; Nathanson MH
    Gastroenterology; 2002 Feb; 122(2):415-27. PubMed ID: 11832456
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Light microscopy techniques for live cell and animal imaging using fluorescent proteins].
    Tanimura A; Nezu A; Morita T
    Nihon Yakurigaku Zasshi; 2013 May; 141(5):262-7. PubMed ID: 23665557
    [No Abstract]   [Full Text] [Related]  

  • 14. Presence of inositol 1,4,5-trisphosphate receptor, calreticulin, and calsequestrin in eggs of sea urchins and Xenopus laevis.
    Parys JB; McPherson SM; Mathews L; Campbell KP; Longo FJ
    Dev Biol; 1994 Feb; 161(2):466-76. PubMed ID: 8313995
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intracellular targeting and homotetramer formation of a truncated inositol 1,4,5-trisphosphate receptor-green fluorescent protein chimera in Xenopus laevis oocytes: evidence for the involvement of the transmembrane spanning domain in endoplasmic reticulum targeting and homotetramer complex formation.
    Sayers LG; Miyawaki A; Muto A; Takeshita H; Yamamoto A; Michikawa T; Furuichi T; Mikoshiba K
    Biochem J; 1997 Apr; 323 ( Pt 1)(Pt 1):273-80. PubMed ID: 9173893
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spatiotemporal patterning of IP3-mediated Ca2+ signals in Xenopus oocytes by Ca2+-binding proteins.
    Dargan SL; Schwaller B; Parker I
    J Physiol; 2004 Apr; 556(Pt 2):447-61. PubMed ID: 14755000
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Construction of a confocal microscope for real-time x-y and x-z imaging.
    Callamaras N; Parker I
    Cell Calcium; 1999 Dec; 26(6):271-9. PubMed ID: 10668565
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fast kinetics of calcium liberation induced in Xenopus oocytes by photoreleased inositol trisphosphate.
    Parker I; Yao Y; Ilyin V
    Biophys J; 1996 Jan; 70(1):222-37. PubMed ID: 8770200
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Developmental expression of the inositol 1,4,5-trisphosphate receptor and structural changes in the endoplasmic reticulum during oogenesis and meiotic maturation of Xenopus laevis.
    Kume S; Yamamoto A; Inoue T; Muto A; Okano H; Mikoshiba K
    Dev Biol; 1997 Feb; 182(2):228-39. PubMed ID: 9070324
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Presence and dynamic redistribution of type I inositol 1,4,5-trisphosphate receptors in human oocytes and embryos during in-vitro maturation, fertilization and early cleavage divisions.
    Goud PT; Goud AP; Van Oostveldt P; Dhont M
    Mol Hum Reprod; 1999 May; 5(5):441-51. PubMed ID: 10338367
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.