These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 10507757)

  • 1. Characterization of [3H]-diprenorphine binding in Rana pipiens: observations of filter binding enhanced by naltrexone.
    Newman LC; Wallace DR; Stevens CW
    J Pharmacol Toxicol Methods; 1999 Feb; 41(1):43-8. PubMed ID: 10507757
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Selective opioid receptor agonist and antagonist displacement of [3H]naloxone binding in amphibian brain.
    Newman LC; Wallace DR; Stevens CW
    Eur J Pharmacol; 2000 Jun; 397(2-3):255-62. PubMed ID: 10844122
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Solubilization of high-affinity, guanine nucleotide-sensitive mu-opioid receptors from rat brain membranes.
    Weems HB; Chalecka-Franaszek E; Côté TE
    J Neurochem; 1996 Mar; 66(3):1042-50. PubMed ID: 8769865
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of intracerebroventricular beta-funaltrexamine on mu opioid receptors in the rat brain: consideration of binding condition.
    Liu-Chen LY; Yang HH; Li S; Adams JU
    J Pharmacol Exp Ther; 1995 Jun; 273(3):1047-56. PubMed ID: 7791074
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Different types of steroids inhibit [3H]diprenorphine binding in mouse brain membranes.
    Gutiérrez M; Menéndez L; Brieva R; Hidalgo A; Baamonde A
    Gen Pharmacol; 1998 Nov; 31(5):747-51. PubMed ID: 9809473
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of specific opioid binding sites in neural membranes from the myenteric plexus of porcine small intestine.
    Townsend D; Portoghese PS; Brown DR
    J Pharmacol Exp Ther; 2004 Jan; 308(1):385-93. PubMed ID: 14569065
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of diethylstilbestrol on mouse hippocampal evoked potentials in vitro.
    SanMartín S; Gutiérrez M; Menéndez L; Hidalgo A; Baamonde A
    Cell Mol Neurobiol; 1999 Dec; 19(6):691-703. PubMed ID: 10456231
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cyproterone acetate displaces opiate binding in mouse brain.
    Gutiérrez M; Menéndez L; Ruiz-Gayo M; Hidalgo A; Baamonde A
    Eur J Pharmacol; 1997 Jun; 328(1):99-102. PubMed ID: 9203575
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Selective opioid agonist and antagonist competition for [3H]-naloxone binding in amphibian spinal cord.
    Newman LC; Wallace DR; Stevens CW
    Brain Res; 2000 Nov; 884(1--2):184-91. PubMed ID: 11082500
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of opioid-binding sites in zebrafish brain.
    González-Núñez V; Barrallo A; Traynor JR; Rodríguez RE
    J Pharmacol Exp Ther; 2006 Feb; 316(2):900-4. PubMed ID: 16207834
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pharmacological effects of naltriben as a ligand for opioid mu and kappa receptors in rat cerebral cortex.
    Kim KW; Son Y; Shin BS; Cho KP
    Life Sci; 2001 Feb; 68(11):1305-15. PubMed ID: 11233997
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stereoselective interaction of ketamine with recombinant mu, kappa, and delta opioid receptors expressed in Chinese hamster ovary cells.
    Hirota K; Okawa H; Appadu BL; Grandy DK; Devi LA; Lambert DG
    Anesthesiology; 1999 Jan; 90(1):174-82. PubMed ID: 9915326
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Some central effects of opioid antagonists. Part I.
    Skorupska M; Langwiński R
    Pol J Pharmacol Pharm; 1989; 41(5):401-11. PubMed ID: 2577060
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Paradoxical and subtype-specific effects of opiate antagonists on the expression of opioid receptors in rat brain cultures.
    Barg J; Levy R; Simantov R
    J Neurosci Res; 1989 Mar; 22(3):322-30. PubMed ID: 2540341
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predominance of delta-opioid-binding sites in the porcine enteric nervous system.
    Townsend D; Brown DR
    J Pharmacol Exp Ther; 2002 Mar; 300(3):900-9. PubMed ID: 11861796
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Characterization of adrenal medullary opioid receptors. I. Binding of opioids to adrenal medullary opioid receptors].
    Murase H; Kamikubo K; Murayama M; Yasuda K; Tsurumi K; Miura K
    Nihon Naibunpi Gakkai Zasshi; 1987 Jun; 63(6):727-40. PubMed ID: 2822499
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Opioid binding sites in the guinea pig and rat kidney: radioligand homogenate binding and autoradiography.
    Dissanayake VU; Hughes J; Hunter JC
    Mol Pharmacol; 1991 Jul; 40(1):93-100. PubMed ID: 1649966
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Opioid receptor agonists activate pertussis toxin-sensitive G proteins and inhibit adenylyl cyclase in canine cardiac sarcolemma.
    Niroomand F; Mura RA; Piacentini L; Kübler W
    Naunyn Schmiedebergs Arch Pharmacol; 1996 Nov; 354(5):643-9. PubMed ID: 8938664
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Opioid antagonists differ according to negative intrinsic efficacy in a mouse model of acute dependence.
    Walker EA; Sterious SN
    Br J Pharmacol; 2005 Aug; 145(7):975-83. PubMed ID: 15912139
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Repeated administration of naltrexone and diprenorphine decreases food intake and body weight in squirrel monkeys.
    Herman BH; Holtzman SG
    Life Sci; 1984 Jan; 34(1):1-12. PubMed ID: 6319931
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.