These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 10508065)

  • 1. Ferric iron reduction by bacteria associated with the roots of freshwater and marine macrophytes.
    King GM; Garey MA
    Appl Environ Microbiol; 1999 Oct; 65(10):4393-8. PubMed ID: 10508065
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electron shuttling via humic acids in microbial iron(III) reduction in a freshwater sediment.
    Kappler A; Benz M; Schink B; Brune A
    FEMS Microbiol Ecol; 2004 Jan; 47(1):85-92. PubMed ID: 19712349
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enrichment and isolation of ferric-iron- and humic-acid-reducing bacteria.
    Straub KL; Kappler A; Schink B
    Methods Enzymol; 2005; 397():58-77. PubMed ID: 16260285
    [TBL] [Abstract][Full Text] [Related]  

  • 4. To improve the performance of sediment microbial fuel cell through amending colloidal iron oxyhydroxide into freshwater sediments.
    Zhou YL; Yang Y; Chen M; Zhao ZW; Jiang HL
    Bioresour Technol; 2014 May; 159():232-9. PubMed ID: 24657753
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of rice root associated nitrate, sulfate and ferric iron reducing bacteria during root decomposition.
    Scheid D; Stubner S; Conrad R
    FEMS Microbiol Ecol; 2004 Nov; 50(2):101-10. PubMed ID: 19712368
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phylogenetic and physiological diversity of dissimilatory ferric iron reducers in sediments of the polluted Scheldt estuary, Northwest Europe.
    Lin B; Hyacinthe C; Bonneville S; Braster M; Van Cappellen P; Röling WF
    Environ Microbiol; 2007 Aug; 9(8):1956-68. PubMed ID: 17635542
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Membrane-Bound Cytochrome Enables
    Holmes DE; Ueki T; Tang HY; Zhou J; Smith JA; Chaput G; Lovley DR
    mBio; 2019 Aug; 10(4):. PubMed ID: 31431545
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microbially Mediated Coupling of Fe and N Cycles by Nitrate-Reducing Fe(II)-Oxidizing Bacteria in Littoral Freshwater Sediments.
    Schaedler F; Lockwood C; Lueder U; Glombitza C; Kappler A; Schmidt C
    Appl Environ Microbiol; 2018 Jan; 84(2):. PubMed ID: 29101195
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Contrasting oxygen dynamics in the freshwater isoetid Lobelia dortmanna and the marine seagrass Zostera marina.
    Sand-Jensen K; Pedersen O; Binzer T; Borum J
    Ann Bot; 2005 Sep; 96(4):613-23. PubMed ID: 16027129
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sulphate reduction and nitrogen fixation rates associated with roots, rhizomes and sediments from Zostera noltii and Spartina maritima meadows.
    Nielsen LB; Finster K; Welsh DT; Donelly A; Herbert RA; de Wit R; Lomstein BA
    Environ Microbiol; 2001 Jan; 3(1):63-71. PubMed ID: 11225724
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of carbon sources and electron shuttles on ferric iron reduction by Cellulomonas sp. strain ES6.
    Gerlach R; Field EK; Viamajala S; Peyton BM; Apel WA; Cunningham AB
    Biodegradation; 2011 Sep; 22(5):983-95. PubMed ID: 21318474
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Geobacter bemidjiensis sp. nov. and Geobacter psychrophilus sp. nov., two novel Fe(III)-reducing subsurface isolates.
    Nevin KP; Holmes DE; Woodard TL; Hinlein ES; Ostendorf DW; Lovley DR
    Int J Syst Evol Microbiol; 2005 Jul; 55(Pt 4):1667-1674. PubMed ID: 16014499
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recovery of humic-reducing bacteria from a diversity of environments.
    Coates JD; Ellis DJ; Blunt-Harris EL; Gaw CV; Roden EE; Lovley DR
    Appl Environ Microbiol; 1998 Apr; 64(4):1504-9. PubMed ID: 9546186
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Geobacter bremensis sp. nov. and Geobacter pelophilus sp. nov., two dissimilatory ferric-iron-reducing bacteria.
    Straub KL; Buchholz-Cleven BE
    Int J Syst Evol Microbiol; 2001 Sep; 51(Pt 5):1805-1808. PubMed ID: 11594612
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of root-associated methanotrophy by oxygen availability in the rhizosphere of two aquatic macrophytes.
    Calhoun A; King GM
    Appl Environ Microbiol; 1997 Aug; 63(8):3051-8. PubMed ID: 16535666
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Higher nitrate-reducer diversity in macrophyte-colonized compared to unvegetated freshwater sediment.
    Kofoed MV; Stief P; Hauzmayer S; Schramm A; Herrmann M
    Syst Appl Microbiol; 2012 Oct; 35(7):465-72. PubMed ID: 23041409
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The transition from freshwater to marine iron-oxidizing bacterial lineages along a salinity gradient on the Sheepscot River, Maine, USA.
    McBeth JM; Fleming EJ; Emerson D
    Environ Microbiol Rep; 2013 Jun; 5(3):453-63. PubMed ID: 23754725
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sulfate-reducing bacteria in rice field soil and on rice roots.
    Wind T; Stubner S; Conrad R
    Syst Appl Microbiol; 1999 May; 22(2):269-79. PubMed ID: 10390878
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anaerobic ammonium oxidation linked to sulfate and ferric iron reduction fuels nitrogen loss in marine sediments.
    Rios-Del Toro EE; Valenzuela EI; López-Lozano NE; Cortés-Martínez MG; Sánchez-Rodríguez MA; Calvario-Martínez O; Sánchez-Carrillo S; Cervantes FJ
    Biodegradation; 2018 Oct; 29(5):429-442. PubMed ID: 29948518
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dominance of sulfur-fueled iron oxide reduction in low-sulfate freshwater sediments.
    Hansel CM; Lentini CJ; Tang Y; Johnston DT; Wankel SD; Jardine PM
    ISME J; 2015 Nov; 9(11):2400-12. PubMed ID: 25871933
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.