BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 10508068)

  • 1. Use of the [(14)C]leucine incorporation technique to measure bacterial production in river sediments and the epiphyton.
    Fischer H; Pusch M
    Appl Environ Microbiol; 1999 Oct; 65(10):4411-8. PubMed ID: 10508068
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Incorporation of radiolabeled leucine into protein to estimate bacterial production in plant litter, sediment, epiphytic biofilms, and water samples.
    Buesing N; Gessner MO
    Microb Ecol; 2003 Mar; 45(3):291-301. PubMed ID: 12658525
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [3H]Leucine incorporation method as a tool to measure secondary production by periphytic bacteria associated to the roots of floating aquatic macrophyte.
    Miranda MR; Guimarães JR; Coelho-Souza AS
    J Microbiol Methods; 2007 Oct; 71(1):23-31. PubMed ID: 17765986
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Application of the [3H]leucine incorporation technique for quantification of bacterial secondary production associated with decaying wetland plant litter.
    Gillies JE; Kuehn KA; Francoeur SN; Neely RK
    Appl Environ Microbiol; 2006 Sep; 72(9):5948-56. PubMed ID: 16957215
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ecosystem-level studies of terrestrial carbon reveal contrasting bacterial metabolism in different aquatic habitats.
    Attermeyer K; Premke K; Hornick T; Hilt S; Grossart HP
    Ecology; 2013 Dec; 94(12):2754-66. PubMed ID: 24597222
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The leucine incorporation method estimates bacterial growth equally well in both oxic and anoxic lake waters.
    Bastviken D; Tranvik L
    Appl Environ Microbiol; 2001 Jul; 67(7):2916-21. PubMed ID: 11425702
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Toxicity of fungicides to natural bacterial communities in wetland water and sediment measured using leucine incorporation and potential denitrification.
    Milenkovski S; Bååth E; Lindgren PE; Berglund O
    Ecotoxicology; 2010 Feb; 19(2):285-94. PubMed ID: 19768538
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adaptation of the 3H-leucine incorporation technique to measure heterotrophic activity associated with biofilm on the blades of the seaweed Sargassum spp.
    Coelho-Souza SA; Miranda MR; Salgado LT; Coutinho R; Guimaraes JR
    Microb Ecol; 2013 Feb; 65(2):424-36. PubMed ID: 22965803
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Empirical leucine-to-carbon conversion factors for estimating heterotrophic bacterial production: seasonality and predictability in a temperate coastal ecosystem.
    Calvo-Díaz A; Morán XA
    Appl Environ Microbiol; 2009 May; 75(10):3216-21. PubMed ID: 19304821
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Benthic bacterial production and protozoan predation in a silty freshwater environment.
    Wieltschnig C; Fischer UR; Kirschner AK; Velimirov B
    Microb Ecol; 2003 Jul; 46(1):62-72. PubMed ID: 12739079
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Incorporation of [h]leucine and [h]valine into protein of freshwater bacteria: uptake kinetics and intracellular isotope dilution.
    Jørgensen NO
    Appl Environ Microbiol; 1992 Nov; 58(11):3638-46. PubMed ID: 16348807
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems.
    Kirchman D; K'nees E; Hodson R
    Appl Environ Microbiol; 1985 Mar; 49(3):599-607. PubMed ID: 3994368
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Colonization of overlaying water by bacteria from dry river sediments.
    Fazi S; Amalfitano S; Piccini C; Zoppini A; Puddu A; Pernthaler J
    Environ Microbiol; 2008 Oct; 10(10):2760-72. PubMed ID: 18643927
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Temperature-driven adaptation of the bacterial community in peat measured by using thymidine and leucine incorporation.
    Ranneklev SB; Bååth E
    Appl Environ Microbiol; 2001 Mar; 67(3):1116-22. PubMed ID: 11229900
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative determination of microbial activity and community nutritional status in estuarine sediments: evidence for a disturbance artifact.
    Findlay RH; Pollard PC; Moriarty DJ; White DC
    Can J Microbiol; 1985; 31():493-8. PubMed ID: 11540101
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessment of [h]thymidine incorporation into DNA as a method to determine bacterial productivity in stream bed sediments.
    Kaplan LA; Bott TL; Bielicki JK
    Appl Environ Microbiol; 1992 Nov; 58(11):3614-21. PubMed ID: 16348806
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Shifts among Eukaryota, Bacteria, and Archaea define the vertical organization of a lake sediment.
    Wurzbacher C; Fuchs A; Attermeyer K; Frindte K; Grossart HP; Hupfer M; Casper P; Monaghan MT
    Microbiome; 2017 Apr; 5(1):41. PubMed ID: 28388930
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prokaryotic functional diversity in different biogeochemical depth zones in tidal sediments of the Severn Estuary, UK, revealed by stable-isotope probing.
    Webster G; Rinna J; Roussel EG; Fry JC; Weightman AJ; Parkes RJ
    FEMS Microbiol Ecol; 2010 May; 72(2):179-97. PubMed ID: 20337706
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of littoral periphyton on whole-lake metabolism relates to littoral vegetation in humic lakes.
    Vesterinen J; Devlin SP; Syväranta J; Jones RI
    Ecology; 2017 Dec; 98(12):3074-3085. PubMed ID: 28888038
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Different methods for extracting bacteria from freshwater sediment and a simple method to measure bacterial production in sediment samples.
    dos Santos Furtado AL; Casper P
    J Microbiol Methods; 2000 Aug; 41(3):249-57. PubMed ID: 10958970
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.