These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 10508078)

  • 1. Significance of size and nucleic acid content heterogeneity as measured by flow cytometry in natural planktonic bacteria.
    Gasol JM; Zweifel UL; Peters F; Fuhrman JA; Hagström A
    Appl Environ Microbiol; 1999 Oct; 65(10):4475-83. PubMed ID: 10508078
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of blue nucleic acid dyes for flow cytometric enumeration of bacteria in aquatic systems.
    Lebaron P; Parthuisot N; Catala P
    Appl Environ Microbiol; 1998 May; 64(5):1725-30. PubMed ID: 9572943
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bacterial abundance, activity, and viability in the eutrophic River Warnow, northeast Germany.
    Freese HM; Karsten U; Schumann R
    Microb Ecol; 2006 Jan; 51(1):117-27. PubMed ID: 16395540
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Two-colour fluorescence fluorimetric analysis for direct quantification of bacteria and its application in monitoring bacterial growth in cellulose degradation systems.
    Duedu KO; French CE
    J Microbiol Methods; 2017 Apr; 135():85-92. PubMed ID: 28215962
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Applicability of LIVE/DEAD BacLight stain with glutaraldehyde fixation for the measurement of bacterial abundance and viability in rainwater.
    Hu W; Murata K; Zhang D
    J Environ Sci (China); 2017 Jan; 51():202-213. PubMed ID: 28115131
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Large fraction of dead and inactive bacteria in coastal marine sediments: comparison of protocols for determination and ecological significance.
    Luna GM; Manini E; Danovaro R
    Appl Environ Microbiol; 2002 Jul; 68(7):3509-13. PubMed ID: 12089035
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Suitability of flow cytometry for estimating bacterial biovolume in natural plankton samples: comparison with microscopy data.
    Felip M; Andreatta S; Sommaruga R; Straskrábová V; Catalan J
    Appl Environ Microbiol; 2007 Jul; 73(14):4508-14. PubMed ID: 17513595
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Changes in community composition during dilution cultures of marine bacterioplankton as assessed by flow cytometric and molecular biological techniques.
    Fuchs BM; Zubkov MV; Sahm K; Burkill PH; Amann R
    Environ Microbiol; 2000 Apr; 2(2):191-201. PubMed ID: 11220305
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Does the high nucleic acid content of individual bacterial cells allow us to discriminate between active cells and inactive cells in aquatic systems?
    Lebaron P; Servais P; Agogué H; Courties C; Joux F
    Appl Environ Microbiol; 2001 Apr; 67(4):1775-82. PubMed ID: 11282632
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Determination of DNA content of aquatic bacteria by flow cytometry.
    Button DK; Robertson BR
    Appl Environ Microbiol; 2001 Apr; 67(4):1636-45. PubMed ID: 11282616
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluating the flow-cytometric nucleic acid double-staining protocol in realistic situations of planktonic bacterial death.
    Falcioni T; Papa S; Gasol JM
    Appl Environ Microbiol; 2008 Mar; 74(6):1767-79. PubMed ID: 18223113
    [TBL] [Abstract][Full Text] [Related]  

  • 12. SYBR green as a fluorescent probe to evaluate the biofilm physiological state of Staphylococcus epidermidis, using flow cytometry.
    Cerca F; Trigo G; Correia A; Cerca N; Azeredo J; Vilanova M
    Can J Microbiol; 2011 Oct; 57(10):850-6. PubMed ID: 21950962
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bacterioplankton compositions of lakes and oceans: a first comparison based on fluorescence in situ hybridization.
    Glöckner FO; Fuchs BM; Amann R
    Appl Environ Microbiol; 1999 Aug; 65(8):3721-6. PubMed ID: 10427073
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Revisiting soil bacterial counting methods: Optimal soil storage and pretreatment methods and comparison of culture-dependent and -independent methods.
    Lee J; Kim HS; Jo HY; Kwon MJ
    PLoS One; 2021; 16(2):e0246142. PubMed ID: 33566842
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantifying heterogeneity: flow cytometry of bacterial cultures.
    Kell DB; Ryder HM; Kaprelyants AS; Westerhoff HV
    Antonie Van Leeuwenhoek; 1991; 60(3-4):145-58. PubMed ID: 1725477
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Detection of bacterial contamination in starch and resin-based papermaking chemicals using fluorescence techniques.
    Nohynek L; Saski E; Haikara A; Raaska L
    J Ind Microbiol Biotechnol; 2003 Apr; 30(4):239-44. PubMed ID: 12720090
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fluorescence microscopy for studying the viability of micro-organisms in natural whey starters.
    Gatti M; Bernini V; Lazzi C; Neviani E
    Lett Appl Microbiol; 2006 Apr; 42(4):338-43. PubMed ID: 16599985
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Determination of total protein content of bacterial cells by SYPRO staining and flow cytometry.
    Zubkov MV; Fuchs BM; Eilers H; Burkill PH; Amann R
    Appl Environ Microbiol; 1999 Jul; 65(7):3251-7. PubMed ID: 10388732
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Application of a rapid direct viable count method to deep-sea sediment bacteria.
    Quéric NV; Soltwedel T; Arntz WE
    J Microbiol Methods; 2004 Jun; 57(3):351-67. PubMed ID: 15134883
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Profiling bacterial survival through a water treatment process and subsequent distribution system.
    Hoefel D; Monis PT; Grooby WL; Andrews S; Saint CP
    J Appl Microbiol; 2005; 99(1):175-86. PubMed ID: 15960678
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.