BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 105082)

  • 1. Characteristics of Drosophila rhodopsin in wild-type and norpA vision transduction mutants.
    Ostroy SE
    J Gen Physiol; 1978 Nov; 72(5):717-32. PubMed ID: 105082
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microphotometric, ultrastructural, and electrophysiological analyses of light-dependent processes on visual receptors in white-eyed wild-type and norpA (no receptor potential) mutant Drosophila.
    Zinkl GM; Maier L; Studer K; Sapp R; Chen DM; Stark WS
    Vis Neurosci; 1990 Nov; 5(5):429-39. PubMed ID: 2126952
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Studies of the Drosophila norpA phototransduction mutant. II. Photoreceptor degeneration and rhodopsin maintenance.
    Meyertholen EP; Stein PJ; Williams MA; Ostroy SE
    J Comp Physiol A; 1987 Nov; 161(6):793-8. PubMed ID: 3123653
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rhodopsin activation causes retinal degeneration in Drosophila rdgC mutant.
    Steele F; O'Tousa JE
    Neuron; 1990 Jun; 4(6):883-90. PubMed ID: 2361011
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Light-induced pigment granule migration in the retinular cells of Drosophila melanogaster. Comparison of wild type with ERG-defective mutants.
    Lo MV; Pak WL
    J Gen Physiol; 1981 Feb; 77(2):155-75. PubMed ID: 6790662
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Four of the six Drosophila rhodopsin-expressing photoreceptors can mediate circadian entrainment in low light.
    Saint-Charles A; Michard-Vanhée C; Alejevski F; Chélot E; Boivin A; Rouyer F
    J Comp Neurol; 2016 Oct; 524(14):2828-44. PubMed ID: 26972685
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular, biochemical, and electrophysiological characterization of Drosophila norpA mutants.
    Pearn MT; Randall LL; Shortridge RD; Burg MG; Pak WL
    J Biol Chem; 1996 Mar; 271(9):4937-45. PubMed ID: 8617767
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of Drosophila melanogaster rhodopsin.
    Nichols R; Pak WL
    J Biol Chem; 1985 Oct; 260(23):12670-4. PubMed ID: 3930500
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrophysiological study of Drosophila rhodopsin mutants.
    Johnson EC; Pak WL
    J Gen Physiol; 1986 Nov; 88(5):651-73. PubMed ID: 3097245
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photoreceptor mutant of Drosophia: is protein involved in intermediate steps of phototransduction?
    Paj WK; Istrit SE; Deland MC; Wu CF
    Science; 1976 Nov; 194(4268):956-9. PubMed ID: 824732
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Studies of the Drosophila norpA phototransduction mutant. I. Electrophysiological changes and the offsetting effect of light.
    Wilson MJ; Ostroy SE
    J Comp Physiol A; 1987 Nov; 161(6):785-91. PubMed ID: 3123652
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phospholipase C rescues visual defect in norpA mutant of Drosophila melanogaster.
    McKay RR; Chen DM; Miller K; Kim S; Stark WS; Shortridge RD
    J Biol Chem; 1995 Jun; 270(22):13271-6. PubMed ID: 7768926
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The accessibility of bovine rhodopsin in photoreceptor membranes.
    Saari JC
    J Cell Biol; 1974 Nov; 63(2 Pt 1):480-91. PubMed ID: 4417532
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of the intradiscal domain in rhodopsin assembly and function.
    Doi T; Molday RS; Khorana HG
    Proc Natl Acad Sci U S A; 1990 Jul; 87(13):4991-5. PubMed ID: 2367520
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Visual receptor cycle in normal and period mutant Drosophila: microspectrophotometry, electrophysiology, and ultrastructural morphometry.
    Chen DM; Christianson JS; Sapp RJ; Stark WS
    Vis Neurosci; 1992 Aug; 9(2):125-35. PubMed ID: 1504021
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mutation that selectively affects rhodopsin concentration in the peripheral photoreceptors of Drosophila melanogaster.
    Larrivee DC; Conrad SK; Stephenson RS; Pak WL
    J Gen Physiol; 1981 Nov; 78(5):521-45. PubMed ID: 6796648
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microspectrophotometry of rhodopsin and metarhodopsin in the moth Galleria.
    Goldman LJ; Barnes SN; Goldsmith TH
    J Gen Physiol; 1975 Sep; 66(3):383-404. PubMed ID: 240907
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular defects in Drosophila rhodopsin mutants.
    Washburn T; O'Tousa JE
    J Biol Chem; 1989 Sep; 264(26):15464-6. PubMed ID: 2768273
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Circadian entrainment to red light in Drosophila: requirement of Rhodopsin 1 and Rhodopsin 6.
    Hanai S; Hamasaka Y; Ishida N
    Neuroreport; 2008 Sep; 19(14):1441-4. PubMed ID: 18766027
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cysteine residues 110 and 187 are essential for the formation of correct structure in bovine rhodopsin.
    Karnik SS; Sakmar TP; Chen HB; Khorana HG
    Proc Natl Acad Sci U S A; 1988 Nov; 85(22):8459-63. PubMed ID: 3186735
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.