BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 10508407)

  • 1. Tertiary interactions between transmembrane segments 3 and 5 near the cytoplasmic side of rhodopsin.
    Yu H; Oprian DD
    Biochemistry; 1999 Sep; 38(37):12033-40. PubMed ID: 10508407
    [TBL] [Abstract][Full Text] [Related]  

  • 2. State-dependent disulfide cross-linking in rhodopsin.
    Yu H; Kono M; Oprian DD
    Biochemistry; 1999 Sep; 38(37):12028-32. PubMed ID: 10508406
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tertiary interactions between the fifth and sixth transmembrane segments of rhodopsin.
    Struthers M; Yu H; Kono M; Oprian DD
    Biochemistry; 1999 May; 38(20):6597-603. PubMed ID: 10350478
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Probing the dark state tertiary structure in the cytoplasmic domain of rhodopsin: proximities between amino acids deduced from spontaneous disulfide bond formation between Cys316 and engineered cysteines in cytoplasmic loop 1.
    Klein-Seetharaman J; Hwa J; Cai K; Altenbach C; Hubbell WL; Khorana HG
    Biochemistry; 2001 Oct; 40(42):12472-8. PubMed ID: 11601970
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Single-cysteine substitution mutants at amino acid positions 55-75, the sequence connecting the cytoplasmic ends of helices I and II in rhodopsin: reactivity of the sulfhydryl groups and their derivatives identifies a tertiary structure that changes upon light-activation.
    Klein-Seetharaman J; Hwa J; Cai K; Altenbach C; Hubbell WL; Khorana HG
    Biochemistry; 1999 Jun; 38(25):7938-44. PubMed ID: 10387036
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Probing the dark state tertiary structure in the cytoplasmic domain of rhodopsin: proximities between amino acids deduced from spontaneous disulfide bond formation between cysteine pairs engineered in cytoplasmic loops 1, 3, and 4.
    Cai K; Klein-Seetharaman J; Altenbach C; Hubbell WL; Khorana HG
    Biochemistry; 2001 Oct; 40(42):12479-85. PubMed ID: 11601971
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Single-cysteine substitution mutants at amino acid positions 306-321 in rhodopsin, the sequence between the cytoplasmic end of helix VII and the palmitoylation sites: sulfhydryl reactivity and transducin activation reveal a tertiary structure.
    Cai K; Klein-Seetharaman J; Farrens D; Zhang C; Altenbach C; Hubbell WL; Khorana HG
    Biochemistry; 1999 Jun; 38(25):7925-30. PubMed ID: 10387034
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure and function in rhodopsin: effects of disulfide cross-links in the cytoplasmic face of rhodopsin on transducin activation and phosphorylation by rhodopsin kinase.
    Cai K; Klein-Seetharaman J; Hwa J; Hubbell WL; Khorana HG
    Biochemistry; 1999 Sep; 38(39):12893-8. PubMed ID: 10504260
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Use of an in situ disulfide cross-linking strategy to map proximities between amino acid residues in transmembrane domains I and VII of the M3 muscarinic acetylcholine receptor.
    Hamdan FF; Ward SD; Siddiqui NA; Bloodworth LM; Wess J
    Biochemistry; 2002 Jun; 41(24):7647-58. PubMed ID: 12056896
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mapping of contact sites in complex formation between transducin and light-activated rhodopsin by covalent crosslinking: use of a photoactivatable reagent.
    Cai K; Itoh Y; Khorana HG
    Proc Natl Acad Sci U S A; 2001 Apr; 98(9):4877-82. PubMed ID: 11320237
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Use of an in situ disulfide cross-linking strategy to study the dynamic properties of the cytoplasmic end of transmembrane domain VI of the M3 muscarinic acetylcholine receptor.
    Ward SD; Hamdan FF; Bloodworth LM; Siddiqui NA; Li JH; Wess J
    Biochemistry; 2006 Jan; 45(3):676-85. PubMed ID: 16411743
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A general method for mapping tertiary contacts between amino acid residues in membrane-embedded proteins.
    Yu H; Kono M; McKee TD; Oprian DD
    Biochemistry; 1995 Nov; 34(46):14963-9. PubMed ID: 7578109
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mapping tertiary contacts between amino acid residues within rhodopsin.
    Struthers M; Oprian DD
    Methods Enzymol; 2000; 315():130-43. PubMed ID: 10736699
    [No Abstract]   [Full Text] [Related]  

  • 14. Mapping of contact sites in complex formation between light-activated rhodopsin and transducin by covalent crosslinking: use of a chemically preactivated reagent.
    Itoh Y; Cai K; Khorana HG
    Proc Natl Acad Sci U S A; 2001 Apr; 98(9):4883-7. PubMed ID: 11320238
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proximity of cytoplasmic and periplasmic loops in NhaA Na+/H+ antiporter of Escherichia coli as determined by site-directed thiol cross-linking.
    Rimon A; Tzubery T; Galili L; Padan E
    Biochemistry; 2002 Dec; 41(50):14897-905. PubMed ID: 12475238
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Disulfide bond exchange in rhodopsin.
    Kono M; Yu H; Oprian DD
    Biochemistry; 1998 Feb; 37(5):1302-5. PubMed ID: 9477956
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Solution 19F nuclear Overhauser effects in structural studies of the cytoplasmic domain of mammalian rhodopsin.
    Loewen MC; Klein-Seetharaman J; Getmanova EV; Reeves PJ; Schwalbe H; Khorana HG
    Proc Natl Acad Sci U S A; 2001 Apr; 98(9):4888-92. PubMed ID: 11320239
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure of the third cytoplasmic loop of bovine rhodopsin.
    Yeagle PL; Alderfer JL; Albert AD
    Biochemistry; 1995 Nov; 34(45):14621-5. PubMed ID: 7578070
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cross-linking and disulfide bond formation of introduced cysteine residues suggest a modified model for the tertiary structure of URF13 in the pore-forming oligomers.
    Rhoads DM; Brunner-Neuenschwander B; Levings CS; Siedow JN
    Arch Biochem Biophys; 1998 Jun; 354(1):158-64. PubMed ID: 9633611
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An opsin mutant with increased thermal stability.
    Xie G; Gross AK; Oprian DD
    Biochemistry; 2003 Feb; 42(7):1995-2001. PubMed ID: 12590586
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.