These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
249 related articles for article (PubMed ID: 10508892)
1. Tidal creek and salt marsh sediments in South Carolina coastal estuaries: I. Distribution of trace metals. Sanger DM; Holland AF; Scott GI Arch Environ Contam Toxicol; 1999 Nov; 37(4):445-57. PubMed ID: 10508892 [TBL] [Abstract][Full Text] [Related]
2. Tidal creek and salt marsh sediments in South Carolina coastal estuaries: II. Distribution of organic contaminants. Sanger DM; Holland AF; Scott GI Arch Environ Contam Toxicol; 1999 Nov; 37(4):458-71. PubMed ID: 10508893 [TBL] [Abstract][Full Text] [Related]
3. Evaluation of the impacts of dock structures and land use on tidal creek ecosystems in South Carolina estuarine environments. Sanger DM; Holland AF; Hernandez DL Environ Manage; 2004 Mar; 33(3):385-400. PubMed ID: 15031758 [TBL] [Abstract][Full Text] [Related]
4. The chemical response of particle-associated contaminants in aquatic sediments to urbanization in New England, U.S.A. Chalmers AT; Van Metre PC; Callender E J Contam Hydrol; 2007 Apr; 91(1-2):4-25. PubMed ID: 17134790 [TBL] [Abstract][Full Text] [Related]
5. Polycyclic aromatic hydrocarbon contamination in South Carolina salt marsh-tidal creek systems: relationships among sediments, biota, and watershed land use. Garner TR; Weinstein JE; Sanger DM Arch Environ Contam Toxicol; 2009 Jul; 57(1):103-15. PubMed ID: 18998042 [TBL] [Abstract][Full Text] [Related]
6. Depositional environment and geochemical response of mangrove sediments from creeks of northern Maharashtra coast, India. Volvoikar SP; Nayak GN Mar Pollut Bull; 2013 Apr; 69(1-2):223-7. PubMed ID: 23337374 [TBL] [Abstract][Full Text] [Related]
7. An Assessment of Southeast United States Headwater Tidal Creek Sediment Contamination Over a Twenty-Year Period in Relation to Coastal Development. Parker C; Sanger D; Wirth E Environ Manage; 2023 Nov; 72(5):883-901. PubMed ID: 37277653 [TBL] [Abstract][Full Text] [Related]
8. Effect of tidal flooding on metal distribution in pore waters of marsh sediments and its transport to water column (Tagus estuary, Portugal). Santos-EcheandÃa J; Vale C; Caetano M; Pereira P; Prego R Mar Environ Res; 2010 Dec; 70(5):358-67. PubMed ID: 20727578 [TBL] [Abstract][Full Text] [Related]
9. Tidal salt marsh sediment in California, USA. Part 2: occurrence and anthropogenic input of trace metals. Hwang HM; Green PG; Higashi RM; Young TM Chemosphere; 2006 Sep; 64(11):1899-909. PubMed ID: 16524617 [TBL] [Abstract][Full Text] [Related]
10. Estuarine habitat quality reflects urbanization at large spatial scales in South Carolina's coastal zone. Van Dolah RF; Riekerk GH; Bergquist DC; Felber J; Chestnut DE; Holland AF Sci Total Environ; 2008 Feb; 390(1):142-54. PubMed ID: 17997472 [TBL] [Abstract][Full Text] [Related]
11. Anthropogenic impacts on tidal creek sedimentation since 1900. Bost MC; Deaton CD; Rodriguez AB; McKee BA; Fodrie FJ; Miller CB PLoS One; 2023; 18(1):e0280490. PubMed ID: 36652445 [TBL] [Abstract][Full Text] [Related]
12. Bioaccumulation of metals in fish species from water and sediments in macrotidal Ennore creek, Chennai, SE coast of India: A metropolitan city effect. Jayaprakash M; Kumar RS; Giridharan L; Sujitha SB; Sarkar SK; Jonathan MP Ecotoxicol Environ Saf; 2015 Oct; 120():243-55. PubMed ID: 26092556 [TBL] [Abstract][Full Text] [Related]
13. Impact of industrial effluents on geochemical association of metals within intertidal sediments of a creek. Volvoikar SP; Nayak GN Mar Pollut Bull; 2015 Oct; 99(1-2):94-103. PubMed ID: 26231063 [TBL] [Abstract][Full Text] [Related]
14. Metal levels in sediments from the Minho estuary salt marsh: a metal clean area? Reis PA; Antunes JC; Almeida CM Environ Monit Assess; 2009 Dec; 159(1-4):191-205. PubMed ID: 19023669 [TBL] [Abstract][Full Text] [Related]
15. Assessment of heavy metal contamination in surface sediments from the nearshore zone, southern Jiangsu Province, China. Qiu J; Liu J; Li M; Wang S; Bai W; Zhang D Mar Pollut Bull; 2018 Aug; 133():281-288. PubMed ID: 30041315 [TBL] [Abstract][Full Text] [Related]
16. Spatial variation and toxicity assessment for heavy metals in sediments of intertidal zone in a typical subtropical estuary (Min River) of China. Sun Z; Li J; He T; Ren P; Zhu H; Gao H; Tian L; Hu X Environ Sci Pollut Res Int; 2017 Oct; 24(29):23080-23095. PubMed ID: 28825222 [TBL] [Abstract][Full Text] [Related]
17. Distribution, enrichment, and potential toxicity of trace metals in the surface sediments of Sundarban mangrove ecosystem, Bangladesh: a baseline study before Sundarban oil spill of December, 2014. Kumar A; Ramanathan A; Prasad MB; Datta D; Kumar M; Sappal SM Environ Sci Pollut Res Int; 2016 May; 23(9):8985-99. PubMed ID: 26822216 [TBL] [Abstract][Full Text] [Related]
18. [Contents, contamination and geochemical characteristics of metals in the sediment from Songhua River]. Lin CY; He MC; Li YX; Liu RM; Yang ZF Huan Jing Ke Xue; 2008 Aug; 29(8):2123-30. PubMed ID: 18839560 [TBL] [Abstract][Full Text] [Related]
19. Accumulation of total trace metals due to rapid urbanization in microtidal zone of Pallikaranai marsh, South of Chennai, India. Jayaprakash M; Urban B; Velmurugan PM; Srinivasalu S Environ Monit Assess; 2010 Nov; 170(1-4):609-29. PubMed ID: 20052614 [TBL] [Abstract][Full Text] [Related]
20. Concentration and fate of trace metals in Mekong River delta. Cenci RM; Martin JM Sci Total Environ; 2004 Oct; 332(1-3):167-82. PubMed ID: 15336900 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]