BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 10508930)

  • 1. Biosynthesis and turnover of anandamide and other N-acylethanolamines in peritoneal macrophages.
    Kuwae T; Shiota Y; Schmid PC; Krebsbach R; Schmid HH
    FEBS Lett; 1999 Oct; 459(1):123-7. PubMed ID: 10508930
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Alternative pathways of anandamide biosynthesis in rat testes.
    Schmid PC; Schwindenhammer D; Krebsbach RJ; Schmid HH
    Chem Phys Lipids; 1998 Mar; 92(1):27-35. PubMed ID: 9631536
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pathways and mechanisms of N-acylethanolamine biosynthesis: can anandamide be generated selectively?
    Schmid HH
    Chem Phys Lipids; 2000 Nov; 108(1-2):71-87. PubMed ID: 11106783
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of glutamate-induced formation of N-acylphosphatidylethanolamine and N-acylethanolamine in cultured neocortical neurons.
    Hansen HS; Lauritzen L; Strand AM; Vinggaard AM; Frandsen A; Schousboe A
    J Neurochem; 1997 Aug; 69(2):753-61. PubMed ID: 9231736
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anandamide and other N-acylethanolamines in mouse peritoneal macrophages.
    Schmid PC; Kuwae T; Krebsbach RJ; Schmid HH
    Chem Phys Lipids; 1997 Jul; 87(2):103-10. PubMed ID: 9275307
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Anandamide and other N-acylethanolamines in human tumors.
    Schmid PC; Wold LE; Krebsbach RJ; Berdyshev EV; Schmid HH
    Lipids; 2002 Sep; 37(9):907-12. PubMed ID: 12458627
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Occurrence and postmortem generation of anandamide and other long-chain N-acylethanolamines in mammalian brain.
    Schmid PC; Krebsbach RJ; Perry SR; Dettmer TM; Maasson JL; Schmid HH
    FEBS Lett; 1995 Nov; 375(1-2):117-20. PubMed ID: 7498458
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Involvement of N-acylethanolamine-hydrolyzing acid amidase in the degradation of anandamide and other N-acylethanolamines in macrophages.
    Sun YX; Tsuboi K; Zhao LY; Okamoto Y; Lambert DM; Ueda N
    Biochim Biophys Acta; 2005 Oct; 1736(3):211-20. PubMed ID: 16154384
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Putative neuroprotective actions of N-acyl-ethanolamines.
    Hansen HS; Moesgaard B; Petersen G; Hansen HH
    Pharmacol Ther; 2002 Aug; 95(2):119-26. PubMed ID: 12182959
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Involvement of the γ Isoform of cPLA
    Guo Y; Uyama T; Rahman SMK; Sikder MM; Hussain Z; Tsuboi K; Miyake M; Ueda N
    Molecules; 2021 Aug; 26(17):. PubMed ID: 34500646
    [TBL] [Abstract][Full Text] [Related]  

  • 11. N-acylethanolamine metabolism with special reference to N-acylethanolamine-hydrolyzing acid amidase (NAAA).
    Ueda N; Tsuboi K; Uyama T
    Prog Lipid Res; 2010 Oct; 49(4):299-315. PubMed ID: 20152858
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Alterations of fatty acyl turnover in macrophage glycerolipids induced by stimulation. Evidence for enhanced recycling of arachidonic acid.
    Kuwae T; Schmid PC; Schmid HH
    Biochim Biophys Acta; 1997 Jan; 1344(1):74-86. PubMed ID: 9022757
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The N-acylation-phosphodiesterase pathway and cell signalling.
    Schmid HH; Schmid PC; Natarajan V
    Chem Phys Lipids; 1996 May; 80(1-2):133-42. PubMed ID: 8681424
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anandamide and diet: inclusion of dietary arachidonate and docosahexaenoate leads to increased brain levels of the corresponding N-acylethanolamines in piglets.
    Berger A; Crozier G; Bisogno T; Cavaliere P; Innis S; Di Marzo V
    Proc Natl Acad Sci U S A; 2001 May; 98(11):6402-6. PubMed ID: 11353819
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Endogenous unsaturated C18 N-acylethanolamines are vanilloid receptor (TRPV1) agonists.
    Movahed P; Jönsson BA; Birnir B; Wingstrand JA; Jørgensen TD; Ermund A; Sterner O; Zygmunt PM; Högestätt ED
    J Biol Chem; 2005 Nov; 280(46):38496-504. PubMed ID: 16081411
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Endocannabinoid metabolism in the absence of fatty acid amide hydrolase (FAAH): discovery of phosphorylcholine derivatives of N-acyl ethanolamines.
    Mulder AM; Cravatt BF
    Biochemistry; 2006 Sep; 45(38):11267-77. PubMed ID: 16981687
    [TBL] [Abstract][Full Text] [Related]  

  • 17. N-acylethanolamine-hydrolyzing acid amidase and fatty acid amide hydrolase inhibition differentially affect N-acylethanolamine levels and macrophage activation.
    Alhouayek M; Bottemanne P; Makriyannis A; Muccioli GG
    Biochim Biophys Acta Mol Cell Biol Lipids; 2017 May; 1862(5):474-484. PubMed ID: 28065729
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biosynthesis of anandamide and related acylethanolamides in mouse J774 macrophages and N18 neuroblastoma cells.
    Di Marzo V; De Petrocellis L; Sepe N; Buono A
    Biochem J; 1996 Jun; 316 ( Pt 3)(Pt 3):977-84. PubMed ID: 8670178
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biosynthesis of an endogenous cannabinoid precursor in neurons and its control by calcium and cAMP.
    Cadas H; Gaillet S; Beltramo M; Venance L; Piomelli D
    J Neurosci; 1996 Jun; 16(12):3934-42. PubMed ID: 8656287
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stress-induced generation of N-acylethanolamines in mouse epidermal JB6 P+ cells.
    Berdyshev EV; Schmid PC; Dong Z; Schmid HH
    Biochem J; 2000 Mar; 346 Pt 2(Pt 2):369-74. PubMed ID: 10677355
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.