BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 10508936)

  • 1. Anaerobic oxidation of thiosulfate to tetrathionate by obligately heterotrophic bacteria, belonging to the Pseudomonas stutzeri group.
    Sorokin DY; Teske A; Robertson LA; Kuenen JG
    FEMS Microbiol Ecol; 1999 Oct; 30(2):113-123. PubMed ID: 10508936
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thiosulfate oxidation by obligately heterotrophic bacteria.
    Mason J; Kelly DP
    Microb Ecol; 1988 Mar; 15(2):123-34. PubMed ID: 24202996
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thiosulfate Oxidation and Tetrathionate Reduction by Intact Cells of Marine Pseudomonad Strain 16B.
    Tuttle JH
    Appl Environ Microbiol; 1980 Jun; 39(6):1159-66. PubMed ID: 16345581
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Oxidation of inorganic sulfur compounds by obligatory organotrophic bacteria].
    Sorokin DIu
    Mikrobiologiia; 2003; 72(6):725-39. PubMed ID: 14768537
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microbial thiocyanate utilization under highly alkaline conditions.
    Sorokin DY; Tourova TP; Lysenko AM; Kuenen JG
    Appl Environ Microbiol; 2001 Feb; 67(2):528-38. PubMed ID: 11157213
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sulfur oxidation in rice field soil: activity, enumeration, isolation and characterization of thiosulfate-oxidizing bacteria.
    Stubner S; Wind T; Conrad R
    Syst Appl Microbiol; 1998 Dec; 21(4):569-78. PubMed ID: 9924825
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Two pathways for thiosulfate oxidation in the alphaproteobacterial chemolithotroph Paracoccus thiocyanatus SST.
    Rameez MJ; Pyne P; Mandal S; Chatterjee S; Alam M; Bhattacharya S; Mondal N; Sarkar J; Ghosh W
    Microbiol Res; 2020 Jan; 230():126345. PubMed ID: 31585234
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolism of thiosulfate and tetrathionate by heterotrophic bacteria from soil.
    Trudinger PA
    J Bacteriol; 1967 Feb; 93(2):550-9. PubMed ID: 6020561
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Complete denitrification in coculture of obligately chemolithoautotrophic haloalkaliphilic sulfur-oxidizing bacteria from a hypersaline soda lake.
    Sorokin DY; Antipov AN; Kuenen JG
    Arch Microbiol; 2003 Aug; 180(2):127-33. PubMed ID: 12827218
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Anaerobic oxidation of 2-chloroethanol under denitrifying conditions by Pseudomonas stutzeri strain JJ.
    Dijk JA; Stams AJ; Schraa G; Ballerstedt H; de Bont JA; Gerritse J
    Appl Microbiol Biotechnol; 2003 Nov; 63(1):68-74. PubMed ID: 12774178
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oxidation of thiosulfate to tetrathionate by an haloarchaeon isolated from hypersaline habitat.
    Sorokin DY; Tourova TP; Muyzer G
    Extremophiles; 2005 Dec; 9(6):501-4. PubMed ID: 16041477
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Homologs from sulfur oxidation (Sox) and methanol dehydrogenation (Xox) enzyme systems collaborate to give rise to a novel pathway of chemolithotrophic tetrathionate oxidation.
    Pyne P; Alam M; Rameez MJ; Mandal S; Sar A; Mondal N; Debnath U; Mathew B; Misra AK; Mandal AK; Ghosh W
    Mol Microbiol; 2018 Jul; 109(2):169-191. PubMed ID: 29669166
    [TBL] [Abstract][Full Text] [Related]  

  • 13. EFFECT OF THIOL-BINDING REAGENTS ON THE METABOLISM OF THIOSULFATE AND TETRATHIONATE BY THIOBACILLUS NEAPOLITANUS.
    TRUDINGER PA
    J Bacteriol; 1965 Mar; 89(3):617-25. PubMed ID: 14273636
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chemolithoautotrophic oxidation of thiosulfate, tetrathionate and thiocyanate by a novel rhizobacterium belonging to the genus Paracoccus.
    Ghosh W; Roy P
    FEMS Microbiol Lett; 2007 May; 270(1):124-31. PubMed ID: 17326754
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Separation and distribution of thiosulfate-oxidizing enzyme, tetrathionate reductase, and thiosulfate reductase in extracts of marine heterotroph strain 16B.
    Whited GM; Tuttle JH
    J Bacteriol; 1983 Nov; 156(2):600-10. PubMed ID: 6630148
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dethiosulfovibrio russensis sp. nov., Dethosulfovibrio marinus sp. nov. and Dethosulfovibrio acidaminovorans sp. nov., novel anaerobic, thiosulfate- and sulfur-reducing bacteria isolated from 'Thiodendron' sulfur mats in different saline environments.
    Surkov AV; Dubinina GA; Lysenko AM; Glöckner FO; Kuever J
    Int J Syst Evol Microbiol; 2001 Mar; 51(Pt 2):327-37. PubMed ID: 11321077
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Denitrification in a binary culture and thiocyanate metabolism in Thiohalophilus thiocyanoxidans gen. nov. sp. nov. - a moderately halophilic chemolithoautotrophic sulfur-oxidizing Gammaproteobacterium from hypersaline lakes.
    Sorokin DY; Tourova TP; Bezsoudnova EY; Pol A; Muyzer G
    Arch Microbiol; 2007 Jun; 187(6):441-50. PubMed ID: 17216167
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Growth of Acidithiobacillus Ferrooxidans ATCC 23270 in Thiosulfate Under Oxygen-Limiting Conditions Generates Extracellular Sulfur Globules by Means of a Secreted Tetrathionate Hydrolase.
    Beard S; Paradela A; Albar JP; Jerez CA
    Front Microbiol; 2011; 2():79. PubMed ID: 21833324
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 16S rRNA gene sequence analysis relative to genomovars of Pseudomonas stutzeri and proposal of Pseudomonas balearica sp. nov.
    Bennasar A; Rosselló-Mora R; Lalucat J; Moore ER
    Int J Syst Bacteriol; 1996 Jan; 46(1):200-5. PubMed ID: 8573496
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dissimilatory reduction of inorganic sulfur by facultatively anaerobic marine bacteria.
    Tuttle JH; Jannasch HW
    J Bacteriol; 1973 Sep; 115(3):732-7. PubMed ID: 4728269
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.