BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 10509012)

  • 1. Construction of a lactose-assimilating strain of baker's yeast.
    Adam AC; Prieto JA; Rubio-Texeira M; Polaina J
    Yeast; 1999 Sep; 15(13):1299-305. PubMed ID: 10509012
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A recombinant Saccharomyces cerevisiae strain for efficient conversion of lactose in salted and unsalted cheese whey into ethanol.
    Tahoun MK; el-Nemr TM; Shata OH
    Nahrung; 2002 Oct; 46(5):321-6. PubMed ID: 12428446
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Highly efficient assimilation of lactose by a metabolically engineered strain of Saccharomyces cerevisiae.
    Rubio-Texeira M; Castrillo JI; Adam AC; Ugalde UO; Polaina J
    Yeast; 1998 Jun; 14(9):827-37. PubMed ID: 9818720
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineered autolytic yeast strains secreting Kluyveromyces lactis beta-galactosidase for production of heterologous proteins in lactose media.
    Becerra M; Rodríguez-Belmonte E; Esperanza Cerdán M; González Siso MI
    J Biotechnol; 2004 Apr; 109(1-2):131-7. PubMed ID: 15063621
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adaptive evolution of a lactose-consuming Saccharomyces cerevisiae recombinant.
    Guimarães PM; François J; Parrou JL; Teixeira JA; Domingues L
    Appl Environ Microbiol; 2008 Mar; 74(6):1748-56. PubMed ID: 18245248
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Genetic and molecular study of inability of the yeast Kluyveromyces lactis var drosophilarum to ferment lactose].
    Naumov GI; Naumova ES; Barrio E; Querol A
    Mikrobiologiia; 2006; 75(3):299-304. PubMed ID: 16871794
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lactose utilization by Saccharomyces cerevisiae strains expressing Kluyveromyces lactis LAC genes.
    Rubio-Texeira M; Arévalo-Rodríguez M; Lequerica JL; Polaina J
    J Biotechnol; 2001 Nov; 84(2):97-106. PubMed ID: 11090681
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The activity of beta-galactosidase and lactose metabolism in Kluyveromyces lactis cultured in cheese whey as a function of growth rate.
    Ornelas AP; Silveira WB; Sampaio FC; Passos FM
    J Appl Microbiol; 2008 Apr; 104(4):1008-13. PubMed ID: 17976174
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Construction of strains of Saccharomyces cerevisiae that grow on lactose.
    Sreekrishna K; Dickson RC
    Proc Natl Acad Sci U S A; 1985 Dec; 82(23):7909-13. PubMed ID: 3934664
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetics of lactose fermentation using a recombinant Saccharomyces cerevisiae strain.
    Jurascík M; Guimarães P; Klein J; Domingues L; Teixeira J; Markos J
    Biotechnol Bioeng; 2006 Aug; 94(6):1147-54. PubMed ID: 16615146
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Valuation of agro-industrial wastes as substrates for heterologous production of α-galactosidase.
    Álvarez-Cao ME; Rico-Díaz A; Cerdán ME; Becerra M; González-Siso MI
    Microb Cell Fact; 2018 Sep; 17(1):137. PubMed ID: 30176892
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [The cloning and expression of the gene for beta-galactosidase from Candida pseudotropicalis yeasts in Saccharomyces cerevisiae cells].
    Tretiak KA; Zakal'skiĭ AE; Gudz' SP
    Mikrobiol Z; 1998; 60(4):57-66. PubMed ID: 9859642
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Alcohol production from cheese whey permeate using genetically modified flocculent yeast cells.
    Domingues L; Lima N; Teixeira JA
    Biotechnol Bioeng; 2001 Mar; 72(5):507-14. PubMed ID: 11460240
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative transcriptome analysis between original and evolved recombinant lactose-consuming Saccharomyces cerevisiae strains.
    Guimarães PM; Le Berre V; Sokol S; François J; Teixeira JA; Domingues L
    Biotechnol J; 2008 Dec; 3(12):1591-7. PubMed ID: 19039778
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Construction of a flocculent Saccharomyces cerevisiae fermenting lactose.
    Domingues L; Teixeira JA; Lima N
    Appl Microbiol Biotechnol; 1999 May; 51(5):621-6. PubMed ID: 10390820
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Antioxidant N-acetyltransferase Mpr1/2 of industrial baker's yeast enhances fermentation ability after air-drying stress in bread dough.
    Sasano Y; Takahashi S; Shima J; Takagi H
    Int J Food Microbiol; 2010 Mar; 138(1-2):181-5. PubMed ID: 20096471
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fermentation of high concentrations of lactose to ethanol by engineered flocculent Saccharomyces cerevisiae.
    Guimarães PM; Teixeira JA; Domingues L
    Biotechnol Lett; 2008 Nov; 30(11):1953-8. PubMed ID: 18575804
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Construction of a flocculent Saccharomyces cerevisiae strain secreting high levels of Aspergillus niger beta-galactosidase.
    Domingues L; Teixeira JA; Penttilä M; Lima N
    Appl Microbiol Biotechnol; 2002 Apr; 58(5):645-50. PubMed ID: 11956748
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Short communication: Conversion of lactose and whey into lactic acid by engineered yeast.
    Turner TL; Kim E; Hwang C; Zhang GC; Liu JJ; Jin YS
    J Dairy Sci; 2017 Jan; 100(1):124-128. PubMed ID: 27837988
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fermentation of deproteinized cheese whey powder solutions to ethanol by engineered Saccharomyces cerevisiae: effect of supplementation with corn steep liquor and repeated-batch operation with biomass recycling by flocculation.
    Silva AC; Guimarães PM; Teixeira JA; Domingues L
    J Ind Microbiol Biotechnol; 2010 Sep; 37(9):973-82. PubMed ID: 20535525
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.