These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
146 related articles for article (PubMed ID: 10509026)
1. Dosimetric adjustment factors for methyl methacrylate derived from a steady-state analysis of a physiologically based clearance-extraction model. Andersen ME; Sarangapani R; Frederick CB; Kimbell JS Inhal Toxicol; 1999 Oct; 11(10):899-926. PubMed ID: 10509026 [TBL] [Abstract][Full Text] [Related]
2. Physiologically based clearance/extraction models for compounds metabolized in the nose: an example with methyl methacrylate. Andersen ME; Sarangapani R Inhal Toxicol; 2001 May; 13(5):397-414. PubMed ID: 11295870 [TBL] [Abstract][Full Text] [Related]
3. Clearance concepts applied to the metabolism of inhaled vapors in tissues lining the nasal cavity. Andersen ME; Sarangapani R Inhal Toxicol; 1999 Oct; 11(10):873-97. PubMed ID: 10509025 [TBL] [Abstract][Full Text] [Related]
4. Use of a hybrid computational fluid dynamics and physiologically based inhalation model for interspecies dosimetry comparisons of ester vapors. Frederick CB; Lomax LG; Black KA; Finch L; Scribner HE; Kimbell JS; Morgan KT; Subramaniam RP; Morris JB Toxicol Appl Pharmacol; 2002 Aug; 183(1):23-40. PubMed ID: 12217639 [TBL] [Abstract][Full Text] [Related]
5. Application of a hybrid computational fluid dynamics and physiologically based inhalation model for interspecies dosimetry extrapolation of acidic vapors in the upper airways. Frederick CB; Bush ML; Lomax LG; Black KA; Finch L; Kimbell JS; Morgan KT; Subramaniam RP; Morris JB; Ultman JS Toxicol Appl Pharmacol; 1998 Sep; 152(1):211-31. PubMed ID: 9772217 [TBL] [Abstract][Full Text] [Related]
6. Physiologically based pharmacokinetic (PBPK) models for nasal tissue dosimetry of organic esters: assessing the state-of-knowledge and risk assessment applications with methyl methacrylate and vinyl acetate. Andersen ME; Green T; Frederick CB; Bogdanffy MS Regul Toxicol Pharmacol; 2002 Dec; 36(3):234-45. PubMed ID: 12473408 [TBL] [Abstract][Full Text] [Related]
7. A hybrid computational fluid dynamics and physiologically based pharmacokinetic model for comparison of predicted tissue concentrations of acrylic acid and other vapors in the rat and human nasal cavities following inhalation exposure. Frederick CB; Gentry PR; Bush ML; Lomax LG; Black KA; Finch L; Kimbell JS; Morgan KT; Subramaniam RP; Morris JB; Ultman JS Inhal Toxicol; 2001 May; 13(5):359-76. PubMed ID: 11295868 [TBL] [Abstract][Full Text] [Related]
8. A PBPK model for evaluating the impact of aldehyde dehydrogenase polymorphisms on comparative rat and human nasal tissue acetaldehyde dosimetry. Teeguarden JG; Bogdanffy MS; Covington TR; Tan C; Jarabek AM Inhal Toxicol; 2008 Feb; 20(4):375-90. PubMed ID: 18302046 [TBL] [Abstract][Full Text] [Related]
9. Computer simulation of inspiratory airflow in all regions of the F344 rat nasal passages. Kimbell JS; Godo MN; Gross EA; Joyner DR; Richardson RB; Morgan KT Toxicol Appl Pharmacol; 1997 Aug; 145(2):388-98. PubMed ID: 9266813 [TBL] [Abstract][Full Text] [Related]
11. A physiologically based pharmacokinetic model for nasal uptake and metabolism of nonreactive vapors. Morris JB; Hassett DN; Blanchard KT Toxicol Appl Pharmacol; 1993 Nov; 123(1):120-9. PubMed ID: 8236250 [TBL] [Abstract][Full Text] [Related]
12. A CFD-PBPK hybrid model for simulating gas and vapor uptake in the rat nose. Bush ML; Frederick CB; Kimbell JS; Ultman JS Toxicol Appl Pharmacol; 1998 May; 150(1):133-45. PubMed ID: 9630462 [TBL] [Abstract][Full Text] [Related]
13. Magnetic resonance imaging and computational fluid dynamics (CFD) simulations of rabbit nasal airflows for the development of hybrid CFD/PBPK models. Corley RA; Minard KR; Kabilan S; Einstein DR; Kuprat AP; Harkema JR; Kimbell JS; Gargas ML; Kinzell JH Inhal Toxicol; 2009 May; 21(6):512-8. PubMed ID: 19519151 [TBL] [Abstract][Full Text] [Related]
14. Application of a hybrid CFD-PBPK nasal dosimetry model in an inhalation risk assessment: an example with acrylic acid. Andersen M; Sarangapani R; Gentry R; Clewell H; Covington T; Frederick CB Toxicol Sci; 2000 Oct; 57(2):312-25. PubMed ID: 11006361 [TBL] [Abstract][Full Text] [Related]
15. Correlation of regional deposition dosage for inhaled nanoparticles in human and rat olfactory. Tian L; Shang Y; Chen R; Bai R; Chen C; Inthavong K; Tu J Part Fibre Toxicol; 2019 Jan; 16(1):6. PubMed ID: 30683122 [TBL] [Abstract][Full Text] [Related]
16. A biologically based risk assessment for vinyl acetate-induced cancer and noncancer inhalation toxicity. Bogdanffy MS; Sarangapani R; Plowchalk DR; Jarabek A; Andersen ME Toxicol Sci; 1999 Sep; 51(1):19-35. PubMed ID: 10496674 [TBL] [Abstract][Full Text] [Related]
17. Dosimetric adjustments for interspecies extrapolation of inhaled poorly soluble particles (PSP). Jarabek AM; Asgharian B; Miller FJ Inhal Toxicol; 2005; 17(7-8):317-34. PubMed ID: 16020031 [TBL] [Abstract][Full Text] [Related]
18. Deposition of inhaled nanoparticles in the rat nasal passages: dose to the olfactory region. Garcia GJ; Kimbell JS Inhal Toxicol; 2009 Dec; 21(14):1165-75. PubMed ID: 19831956 [TBL] [Abstract][Full Text] [Related]
19. Use of a pharmacokinetic-driven computational fluid dynamics model to predict nasal extraction of hydrogen sulfide in rats and humans. Schroeter JD; Kimbell JS; Andersen ME; Dorman DC Toxicol Sci; 2006 Dec; 94(2):359-67. PubMed ID: 16984956 [TBL] [Abstract][Full Text] [Related]
20. Ethyl acrylate risk assessment with a hybrid computational fluid dynamics and physiologically based nasal dosimetry model. Sweeney LM; Andersen ME; Gargas ML Toxicol Sci; 2004 Jun; 79(2):394-403. PubMed ID: 15056811 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]