These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 10509176)

  • 1. Lithium at 50: have the neuroprotective effects of this unique cation been overlooked?
    Manji HK; Moore GJ; Chen G
    Biol Psychiatry; 1999 Oct; 46(7):929-40. PubMed ID: 10509176
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lithium up-regulates the cytoprotective protein Bcl-2 in the CNS in vivo: a role for neurotrophic and neuroprotective effects in manic depressive illness.
    Manji HK; Moore GJ; Chen G
    J Clin Psychiatry; 2000; 61 Suppl 9():82-96. PubMed ID: 10826666
    [TBL] [Abstract][Full Text] [Related]  

  • 3. FGF-21, a novel metabolic regulator, has a robust neuroprotective role and is markedly elevated in neurons by mood stabilizers.
    Leng Y; Wang Z; Tsai LK; Leeds P; Fessler EB; Wang J; Chuang DM
    Mol Psychiatry; 2015 Feb; 20(2):215-23. PubMed ID: 24468826
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modulation of CNS signal transduction pathways and gene expression by mood-stabilizing agents: therapeutic implications.
    Manji HK; Bebchuk JM; Moore GJ; Glitz D; Hasanat KA; Chen G
    J Clin Psychiatry; 1999; 60 Suppl 2():27-39; discussion 40-1, 113-6. PubMed ID: 10073385
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bipolar disorder: leads from the molecular and cellular mechanisms of action of mood stabilizers.
    Manji HK; Moore GJ; Chen G
    Br J Psychiatry Suppl; 2001 Jun; 41():s107-19. PubMed ID: 11450170
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular mechanisms underlying mood stabilization in manic-depressive illness: the phenotype challenge.
    Ikonomov OC; Manji HK
    Am J Psychiatry; 1999 Oct; 156(10):1506-14. PubMed ID: 10518159
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The mood-stabilizing agent valproate inhibits the activity of glycogen synthase kinase-3.
    Chen G; Huang LD; Jiang YM; Manji HK
    J Neurochem; 1999 Mar; 72(3):1327-30. PubMed ID: 10037507
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lithium down-regulates tau in cultured cortical neurons: a possible mechanism of neuroprotection.
    Rametti A; Esclaire F; Yardin C; Cogné N; Terro F
    Neurosci Lett; 2008 Mar; 434(1):93-8. PubMed ID: 18289787
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The mood-stabilizing agents lithium and valproate robustly increase the levels of the neuroprotective protein bcl-2 in the CNS.
    Chen G; Zeng WZ; Yuan PX; Huang LD; Jiang YM; Zhao ZH; Manji HK
    J Neurochem; 1999 Feb; 72(2):879-82. PubMed ID: 9930766
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lithium activates the c-Jun NH2-terminal kinases in vitro and in the CNS in vivo.
    Yuan P; Chen G; Manji HK
    J Neurochem; 1999 Dec; 73(6):2299-309. PubMed ID: 10582587
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cytoprotection by lithium and valproate varies between cell types and cellular stresses.
    Lai JS; Zhao C; Warsh JJ; Li PP
    Eur J Pharmacol; 2006 Jun; 539(1-2):18-26. PubMed ID: 16678157
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lithium-induced activation of Akt and CaM kinase II contributes to its neuroprotective action in a rat microsphere embolism model.
    Sasaki T; Han F; Shioda N; Moriguchi S; Kasahara J; Ishiguro K; Fukunaga K
    Brain Res; 2006 Sep; 1108(1):98-106. PubMed ID: 16843447
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lithium reduces tau phosphorylation: effects in living cells and in neurons at therapeutic concentrations.
    Lovestone S; Davis DR; Webster MT; Kaech S; Brion JP; Matus A; Anderton BH
    Biol Psychiatry; 1999 Apr; 45(8):995-1003. PubMed ID: 10386182
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lithium neuroprotection: molecular mechanisms and clinical implications.
    Rowe MK; Chuang DM
    Expert Rev Mol Med; 2004 Oct; 6(21):1-18. PubMed ID: 15488156
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kainate-induced toxicity in the hippocampus: potential role of lithium.
    Crespo-Biel N; Camins A; Canudas AM; Pallàs M
    Bipolar Disord; 2010 Jun; 12(4):425-36. PubMed ID: 20636640
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lithium treatment prevents neurocognitive deficit resulting from cranial irradiation.
    Yazlovitskaya EM; Edwards E; Thotala D; Fu A; Osusky KL; Whetsell WO; Boone B; Shinohara ET; Hallahan DE
    Cancer Res; 2006 Dec; 66(23):11179-86. PubMed ID: 17145862
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lithium induces gene expression through lymphoid enhancer-binding factor/T-cell factor responsive element in rat PC12 cells.
    Bettini E; Magnani E; Terstappen GC
    Neurosci Lett; 2002 Jan; 317(1):50-2. PubMed ID: 11750994
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cellular plasticity cascades: genes-to-behavior pathways in animal models of bipolar disorder.
    Einat H; Manji HK
    Biol Psychiatry; 2006 Jun; 59(12):1160-71. PubMed ID: 16457783
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High lithium levels in tobacco may account for reduced incidences of both Parkinson's disease and melanoma in smokers through enhanced β-catenin-mediated activity.
    Guttuso T
    Med Hypotheses; 2019 Oct; 131():109302. PubMed ID: 31443765
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lithium and synaptic plasticity.
    Salinas PC; Hall AC
    Bipolar Disord; 1999 Dec; 1(2):87-90. PubMed ID: 11252664
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.