BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

273 related articles for article (PubMed ID: 10509188)

  • 1. Biodegradable polymeric microcellular foams by modified thermally induced phase separation method.
    Nam YS; Park TG
    Biomaterials; 1999 Oct; 20(19):1783-90. PubMed ID: 10509188
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vitro and in vivo degradation of porous poly(DL-lactic-co-glycolic acid) foams.
    Lu L; Peter SJ; Lyman MD; Lai HL; Leite SM; Tamada JA; Uyama S; Vacanti JP; Langer R; Mikos AG
    Biomaterials; 2000 Sep; 21(18):1837-45. PubMed ID: 10919687
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of some factors on fabrication of poly(L-lactic acid) microporous foams by thermally induced phase separation using N,N-dimethylacetamide as solvent.
    Li S; Chen X; Li M
    Prep Biochem Biotechnol; 2011; 41(1):53-72. PubMed ID: 21229464
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Poly(alpha-hydroxyl acids)/hydroxyapatite porous composites for bone-tissue engineering. I. Preparation and morphology.
    Zhang R; Ma PX
    J Biomed Mater Res; 1999 Mar; 44(4):446-55. PubMed ID: 10397949
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Porous biodegradable polymeric scaffolds prepared by thermally induced phase separation.
    Nam YS; Park TG
    J Biomed Mater Res; 1999 Oct; 47(1):8-17. PubMed ID: 10400875
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preparation of poly(L-lactic acid) and poly(DL-lactic-co-glycolic acid) foams by use of ice microparticulates.
    Chen G; Ushida T; Tateishi T
    Biomaterials; 2001 Sep; 22(18):2563-7. PubMed ID: 11516089
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Generation of porous microcellular 85/15 poly (DL-lactide-co-glycolide) foams for biomedical applications.
    Singh L; Kumar V; Ratner BD
    Biomaterials; 2004 Jun; 25(13):2611-7. PubMed ID: 14751747
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A biodegradable hybrid sponge nested with collagen microsponges.
    Chen G; Ushida T; Tateishi T
    J Biomed Mater Res; 2000 Aug; 51(2):273-9. PubMed ID: 10825227
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Macroporous polymer foams by hydrocarbon templating.
    Shastri VP; Martin I; Langer R
    Proc Natl Acad Sci U S A; 2000 Feb; 97(5):1970-5. PubMed ID: 10696111
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabrication of poly(alpha-hydroxy acid) foam scaffolds using multiple solvent systems.
    Hu Y; Grainger DW; Winn SR; Hollinger JO
    J Biomed Mater Res; 2002 Mar; 59(3):563-72. PubMed ID: 11774315
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Degradation behaviors of biodegradable macroporous scaffolds prepared by gas foaming of effervescent salts.
    Yoon JJ; Park TG
    J Biomed Mater Res; 2001 Jun; 55(3):401-8. PubMed ID: 11255194
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis, characterization, biodegradation, and drug delivery application of biodegradable lactic/glycolic acid oligomers: Part II. Biodegradation and drug delivery application.
    Wang N; Wu XS
    J Biomater Sci Polym Ed; 1997; 9(1):75-87. PubMed ID: 9505204
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermally produced biodegradable scaffolds for cartilage tissue engineering.
    Lee SH; Kim BS; Kim SH; Kang SW; Kim YH
    Macromol Biosci; 2004 Aug; 4(8):802-10. PubMed ID: 15468274
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Manufacture of porous biodegradable polymer conduits by an extrusion process for guided tissue regeneration.
    Widmer MS; Gupta PK; Lu L; Meszlenyi RK; Evans GR; Brandt K; Savel T; Gurlek A; Patrick CW; Mikos AG
    Biomaterials; 1998 Nov; 19(21):1945-55. PubMed ID: 9863528
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Controlled release of plasmid DNA from biodegradable scaffolds fabricated using a thermally-induced phase-separation method.
    Chun KW; Cho KC; Kim SH; Jeong JH; Park TG
    J Biomater Sci Polym Ed; 2004; 15(11):1341-53. PubMed ID: 15648567
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Systematic selection of solvents for the fabrication of 3D combined macro- and microporous polymeric scaffolds for soft tissue engineering.
    Cao Y; Croll TI; Oconnor AJ; Stevens GW; Cooper-White JJ
    J Biomater Sci Polym Ed; 2006; 17(4):369-402. PubMed ID: 16768291
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydroxyapatite fiber reinforced poly(alpha-hydroxy ester) foams for bone regeneration.
    Thomson RC; Yaszemski MJ; Powers JM; Mikos AG
    Biomaterials; 1998 Nov; 19(21):1935-43. PubMed ID: 9863527
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Novel approach to fabricate porous sponges of poly(D,L-lactic-co-glycolic acid) without the use of organic solvents.
    Mooney DJ; Baldwin DF; Suh NP; Vacanti JP; Langer R
    Biomaterials; 1996 Jul; 17(14):1417-22. PubMed ID: 8830969
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preparation of biodegradable microparticles using solution-enhanced dispersion by supercritical fluids (SEDS).
    Ghaderi R; Artursson P; Carlfors J
    Pharm Res; 1999 May; 16(5):676-81. PubMed ID: 10350010
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Submicronparticles from biodegradable polymers.
    Jobmann M; Rafler G
    Int J Pharm; 2002 Aug; 242(1-2):213-7. PubMed ID: 12176249
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.