These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

269 related articles for article (PubMed ID: 10509188)

  • 1. Biodegradable polymeric microcellular foams by modified thermally induced phase separation method.
    Nam YS; Park TG
    Biomaterials; 1999 Oct; 20(19):1783-90. PubMed ID: 10509188
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vitro and in vivo degradation of porous poly(DL-lactic-co-glycolic acid) foams.
    Lu L; Peter SJ; Lyman MD; Lai HL; Leite SM; Tamada JA; Uyama S; Vacanti JP; Langer R; Mikos AG
    Biomaterials; 2000 Sep; 21(18):1837-45. PubMed ID: 10919687
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of some factors on fabrication of poly(L-lactic acid) microporous foams by thermally induced phase separation using N,N-dimethylacetamide as solvent.
    Li S; Chen X; Li M
    Prep Biochem Biotechnol; 2011; 41(1):53-72. PubMed ID: 21229464
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Poly(alpha-hydroxyl acids)/hydroxyapatite porous composites for bone-tissue engineering. I. Preparation and morphology.
    Zhang R; Ma PX
    J Biomed Mater Res; 1999 Mar; 44(4):446-55. PubMed ID: 10397949
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Porous biodegradable polymeric scaffolds prepared by thermally induced phase separation.
    Nam YS; Park TG
    J Biomed Mater Res; 1999 Oct; 47(1):8-17. PubMed ID: 10400875
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preparation of poly(L-lactic acid) and poly(DL-lactic-co-glycolic acid) foams by use of ice microparticulates.
    Chen G; Ushida T; Tateishi T
    Biomaterials; 2001 Sep; 22(18):2563-7. PubMed ID: 11516089
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Generation of porous microcellular 85/15 poly (DL-lactide-co-glycolide) foams for biomedical applications.
    Singh L; Kumar V; Ratner BD
    Biomaterials; 2004 Jun; 25(13):2611-7. PubMed ID: 14751747
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A biodegradable hybrid sponge nested with collagen microsponges.
    Chen G; Ushida T; Tateishi T
    J Biomed Mater Res; 2000 Aug; 51(2):273-9. PubMed ID: 10825227
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Macroporous polymer foams by hydrocarbon templating.
    Shastri VP; Martin I; Langer R
    Proc Natl Acad Sci U S A; 2000 Feb; 97(5):1970-5. PubMed ID: 10696111
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabrication of poly(alpha-hydroxy acid) foam scaffolds using multiple solvent systems.
    Hu Y; Grainger DW; Winn SR; Hollinger JO
    J Biomed Mater Res; 2002 Mar; 59(3):563-72. PubMed ID: 11774315
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Degradation behaviors of biodegradable macroporous scaffolds prepared by gas foaming of effervescent salts.
    Yoon JJ; Park TG
    J Biomed Mater Res; 2001 Jun; 55(3):401-8. PubMed ID: 11255194
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis, characterization, biodegradation, and drug delivery application of biodegradable lactic/glycolic acid oligomers: Part II. Biodegradation and drug delivery application.
    Wang N; Wu XS
    J Biomater Sci Polym Ed; 1997; 9(1):75-87. PubMed ID: 9505204
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermally produced biodegradable scaffolds for cartilage tissue engineering.
    Lee SH; Kim BS; Kim SH; Kang SW; Kim YH
    Macromol Biosci; 2004 Aug; 4(8):802-10. PubMed ID: 15468274
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Manufacture of porous biodegradable polymer conduits by an extrusion process for guided tissue regeneration.
    Widmer MS; Gupta PK; Lu L; Meszlenyi RK; Evans GR; Brandt K; Savel T; Gurlek A; Patrick CW; Mikos AG
    Biomaterials; 1998 Nov; 19(21):1945-55. PubMed ID: 9863528
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Controlled release of plasmid DNA from biodegradable scaffolds fabricated using a thermally-induced phase-separation method.
    Chun KW; Cho KC; Kim SH; Jeong JH; Park TG
    J Biomater Sci Polym Ed; 2004; 15(11):1341-53. PubMed ID: 15648567
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Systematic selection of solvents for the fabrication of 3D combined macro- and microporous polymeric scaffolds for soft tissue engineering.
    Cao Y; Croll TI; Oconnor AJ; Stevens GW; Cooper-White JJ
    J Biomater Sci Polym Ed; 2006; 17(4):369-402. PubMed ID: 16768291
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydroxyapatite fiber reinforced poly(alpha-hydroxy ester) foams for bone regeneration.
    Thomson RC; Yaszemski MJ; Powers JM; Mikos AG
    Biomaterials; 1998 Nov; 19(21):1935-43. PubMed ID: 9863527
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Novel approach to fabricate porous sponges of poly(D,L-lactic-co-glycolic acid) without the use of organic solvents.
    Mooney DJ; Baldwin DF; Suh NP; Vacanti JP; Langer R
    Biomaterials; 1996 Jul; 17(14):1417-22. PubMed ID: 8830969
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preparation of biodegradable microparticles using solution-enhanced dispersion by supercritical fluids (SEDS).
    Ghaderi R; Artursson P; Carlfors J
    Pharm Res; 1999 May; 16(5):676-81. PubMed ID: 10350010
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Submicronparticles from biodegradable polymers.
    Jobmann M; Rafler G
    Int J Pharm; 2002 Aug; 242(1-2):213-7. PubMed ID: 12176249
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.