These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
171 related articles for article (PubMed ID: 10509247)
1. Production of menaquinones by lactic acid bacteria. Morishita T; Tamura N; Makino T; Kudo S J Dairy Sci; 1999 Sep; 82(9):1897-903. PubMed ID: 10509247 [TBL] [Abstract][Full Text] [Related]
2. Effect of dissolved oxygen on redox potential and milk acidification by lactic acid bacteria isolated from a DL-starter culture. Larsen N; Werner BB; Vogensen FK; Jespersen L J Dairy Sci; 2015 Mar; 98(3):1640-51. PubMed ID: 25597975 [TBL] [Abstract][Full Text] [Related]
3. Stimulation of cadaverine production by foodborne pathogens in the presence of Lactobacillus, Lactococcus, and Streptococcus spp. Kuley E; Balıkcı E; Özoğul I; Gökdogan S; Ozoğul F J Food Sci; 2012 Dec; 77(12):M650-8. PubMed ID: 22853653 [TBL] [Abstract][Full Text] [Related]
4. Identification of lactic acid bacteria in Taiwanese ropy fermented milk and evaluation of their microbial ecology in bovine and caprine milk. Wang SY; Chen HC; Dai TY; Huang IN; Liu JR; Chen MJ J Dairy Sci; 2011 Feb; 94(2):623-35. PubMed ID: 21257031 [TBL] [Abstract][Full Text] [Related]
5. Mixed starter of Lactococcus lactis and Leuconostoc citreum for extending kimchi shelf-life. Kim MJ; Lee HW; Lee ME; Roh SW; Kim TW J Microbiol; 2019 Jun; 57(6):479-484. PubMed ID: 31073899 [TBL] [Abstract][Full Text] [Related]
6. Effect of fermented milk from Lactococcus lactis ssp. cremoris strain JFR1 on Salmonella invasion of intestinal epithelial cells. Zhang JS; Corredig M; Morales-Rayas R; Hassan A; Griffiths MW; LaPointe G J Dairy Sci; 2019 Aug; 102(8):6802-6819. PubMed ID: 31202650 [TBL] [Abstract][Full Text] [Related]
7. The distribution of isoprenoid quinones in streptococci of serological groups D and N. Collins MD; Jones D J Gen Microbiol; 1979 Sep; 114(1):27-33. PubMed ID: 118232 [TBL] [Abstract][Full Text] [Related]
8. Utilization of dipeptides by Lactococcus lactis ssp. cremoris. van Boven A; Konings WN Biochimie; 1988 Apr; 70(4):535-42. PubMed ID: 3139073 [TBL] [Abstract][Full Text] [Related]
9. Characterization of starter lactic acid bacteria from the Finnish fermented milk product viili. Kahala M; Mäki M; Lehtovaara A; Tapanainen JM; Katiska R; Juuruskorpi M; Juhola J; Joutsjoki V J Appl Microbiol; 2008 Dec; 105(6):1929-38. PubMed ID: 19120639 [TBL] [Abstract][Full Text] [Related]
10. Effects of cultivation conditions on folate production by lactic acid bacteria. Sybesma W; Starrenburg M; Tijsseling L; Hoefnagel MH; Hugenholtz J Appl Environ Microbiol; 2003 Aug; 69(8):4542-8. PubMed ID: 12902240 [TBL] [Abstract][Full Text] [Related]
11. Fermented soymilk with a monoculture of Lactococcus lactis. Beasley S; Tuorila H; Saris PE Int J Food Microbiol; 2003 Mar; 81(2):159-62. PubMed ID: 12457590 [TBL] [Abstract][Full Text] [Related]
12. Genetic diversity among Lactococcus sp. and Leuconostoc sp. strains using PCR-RFLP of insertion sequences ISS1-type, IS904, and IS982. Walczak P; Konopacka M; Otlewska A Pol J Microbiol; 2005; 54(3):183-9. PubMed ID: 16450833 [TBL] [Abstract][Full Text] [Related]
13. A copper-induced quinone degradation pathway provides protection against combined copper/quinone stress in Lactococcus lactis IL1403. Mancini S; Abicht HK; Gonskikh Y; Solioz M Mol Microbiol; 2015 Feb; 95(4):645-59. PubMed ID: 25430846 [TBL] [Abstract][Full Text] [Related]
14. Long-chain vitamin K2 production in Lactococcus lactis is influenced by temperature, carbon source, aeration and mode of energy metabolism. Liu Y; van Bennekom EO; Zhang Y; Abee T; Smid EJ Microb Cell Fact; 2019 Aug; 18(1):129. PubMed ID: 31387603 [TBL] [Abstract][Full Text] [Related]
15. Novel characteristic for distinguishing Lactococcus lactis subsp. lactis from subsp. cremoris. Nomura M; Kimoto H; Someya Y; Suzuki I Int J Syst Bacteriol; 1999 Jan; 49 Pt 1():163-6. PubMed ID: 10028257 [TBL] [Abstract][Full Text] [Related]
16. Interaction between Lactococcus lactis and Lactococcus raffinolactis during growth in milk: development of a new starter culture. Kimoto-Nira H; Aoki R; Mizumachi K; Sasaki K; Naito H; Sawada T; Suzuki C J Dairy Sci; 2012 Apr; 95(4):2176-85. PubMed ID: 22459863 [TBL] [Abstract][Full Text] [Related]
17. Peptide utilization by Lactococcus lactis and Leuconostoc mesenteroides. Foucaud C; Hemme D; Desmazeaud M Lett Appl Microbiol; 2001 Jan; 32(1):20-5. PubMed ID: 11169036 [TBL] [Abstract][Full Text] [Related]
18. Lactococcus lactis produces short-chain quinones that cross-feed Group B Streptococcus to activate respiration growth. Rezaïki L; Lamberet G; Derré A; Gruss A; Gaudu P Mol Microbiol; 2008 Mar; 67(5):947-57. PubMed ID: 18194159 [TBL] [Abstract][Full Text] [Related]
19. Bacteriocins produced by wild Lactococcus lactis strains isolated from traditional, starter-free cheeses made of raw milk. Alegría A; Delgado S; Roces C; López B; Mayo B Int J Food Microbiol; 2010 Sep; 143(1-2):61-6. PubMed ID: 20708289 [TBL] [Abstract][Full Text] [Related]
20. B-cell mitogen produced by slime-forming, encapsulated Lactococcus lactis ssp. cremoris isolated from ropy sour milk, viili. Kitazawa H; Yamaguchi T; Miura M; Saito T; Itoh T J Dairy Sci; 1993 Jun; 76(6):1514-9. PubMed ID: 8326024 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]