These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

295 related articles for article (PubMed ID: 10509370)

  • 41. Accuracy of dual-energy x-ray absorptiometry for body-composition measurements in children.
    Ellis KJ; Shypailo RJ; Pratt JA; Pond WG
    Am J Clin Nutr; 1994 Nov; 60(5):660-5. PubMed ID: 7942570
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Body composition analysis of small pigs by dual-energy x-ray absorptiometry.
    Mitchell AD; Scholz AM; Conway JM
    J Anim Sci; 1998 Sep; 76(9):2392-8. PubMed ID: 9781495
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Validation of bone mass and body composition measurements in small subjects with pencil beam dual energy X-ray absorptiometry.
    Koo WW; Hammami M; Hockman EM
    J Am Coll Nutr; 2004 Feb; 23(1):79-84. PubMed ID: 14963057
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Body composition analysis of pigs by dual-energy x-ray absorptiometry.
    Mitchell AD; Conway JM; Potts WJ
    J Anim Sci; 1996 Nov; 74(11):2663-71. PubMed ID: 8923180
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Use of magnetic resonance imaging to predict the body composition of pigs in vivo.
    Kremer PV; Förster M; Scholz AM
    Animal; 2013 Jun; 7(6):879-84. PubMed ID: 23228200
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Evaluation of dual-energy X-Ray absorptiometry for body-composition assessment in rats.
    Bertin E; Ruiz JC; Mourot J; Peiniau P; Portha B
    J Nutr; 1998 Sep; 128(9):1550-4. PubMed ID: 9732318
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Validation and application of dual-energy x-ray absorptiometry to measure bone mass and body composition in small infants.
    Brunton JA; Bayley HS; Atkinson SA
    Am J Clin Nutr; 1993 Dec; 58(6):839-45. PubMed ID: 8249864
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Air displacement plethysmography, dual-energy X-ray absorptiometry, and total body water to evaluate body composition in preschool-age children.
    Crook TA; Armbya N; Cleves MA; Badger TM; Andres A
    J Acad Nutr Diet; 2012 Dec; 112(12):1993-8. PubMed ID: 23174685
    [TBL] [Abstract][Full Text] [Related]  

  • 49. In vivo measurement of body composition of chickens using quantitative magnetic resonance.
    Mitchell AD; Rosebrough RW; Taicher GZ; Kovner I
    Poult Sci; 2011 Aug; 90(8):1712-9. PubMed ID: 21753208
    [TBL] [Abstract][Full Text] [Related]  

  • 50. QMR: validation of an infant and children body composition instrument using piglets against chemical analysis.
    Andres A; Mitchell AD; Badger TM
    Int J Obes (Lond); 2010 Apr; 34(4):775-80. PubMed ID: 20065974
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Total-body calcium estimated by delayed gamma neutron activation analysis and dual-energy X-ray absorptiometry.
    Aloia JF; Ma R; Vaswani A; Feuerman M
    Osteoporos Int; 1999; 10(6):510-5. PubMed ID: 10663353
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Soft tissue composition of pigs measured with dual x-ray absorptiometry: comparison with chemical analyses and effects of carcass thicknesses.
    Lukaski HC; Marchello MJ; Hall CB; Schafer DM; Siders WA
    Nutrition; 1999 Sep; 15(9):697-703. PubMed ID: 10467615
    [TBL] [Abstract][Full Text] [Related]  

  • 53. In vivo quantification of fat content in mice using the Hologic QDR 4500A densitometer.
    Senn SM; Kantor S; Leury BJ; Andrikopoulos S; O'Brien TJ; Morris MJ; Proietto J; Wark JD
    Obes Res Clin Pract; 2007 Jan; 1(1):1-78. PubMed ID: 24351433
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Accuracy of predicting chemical body composition of growing pigs using dual-energy X-ray absorptiometry.
    Kasper C; Schlegel P; Ruiz-Ascacibar I; Stoll P; Bee G
    Animal; 2021 Aug; 15(8):100307. PubMed ID: 34273875
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Validation of dual-energy x-ray absorptiometry for determining in vivo body composition of chickens.
    Swennen Q; Janssens GP; Geers R; Decuypere E; Buyse J
    Poult Sci; 2004 Aug; 83(8):1348-57. PubMed ID: 15339010
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Use of balance methods for assessment of short-term changes in body composition.
    Müller MJ; Bosy-Westphal A; Lagerpusch M; Heymsfield SB
    Obesity (Silver Spring); 2012 Apr; 20(4):701-7. PubMed ID: 21869755
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The accuracy of predicting carcass composition of three different pig genetic lines by dual-energy X-ray absorptiometry.
    Marcoux M; Faucitano L; Pomar C
    Meat Sci; 2005 Aug; 70(4):655-63. PubMed ID: 22063893
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Total and intraabdominal fat distribution in preadolescents and adolescents: measurement with MR imaging.
    Siegel MJ; Hildebolt CF; Bae KT; Hong C; White NH
    Radiology; 2007 Mar; 242(3):846-56. PubMed ID: 17244720
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Accuracy and precision of dual-energy X-ray absorptiometry for body composition measurements in rhesus monkeys.
    Black A; Tilmont EM; Baer DJ; Rumpler WV; Ingram DK; Roth GS; Lane MA
    J Med Primatol; 2001 Apr; 30(2):94-9. PubMed ID: 11491410
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Quantitative magnetic resonance (QMR) for longitudinal evaluation of body composition changes with two dietary regimens.
    Swe Myint K; Napolitano A; Miller SR; Murgatroyd PR; Elkhawad M; Nunez DJ; Finer N
    Obesity (Silver Spring); 2010 Feb; 18(2):391-6. PubMed ID: 19696753
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.