These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
69 related articles for article (PubMed ID: 10509736)
1. The effects of calbindin D-28K and parvalbumin antisense oligonucleotides on the survival of cultured Purkinje cells. Vig PJ; McDaniel DO; Subramony SH; Qin Z Res Commun Mol Pathol Pharmacol; 1999 Mar; 103(3):249-59. PubMed ID: 10509736 [TBL] [Abstract][Full Text] [Related]
2. Effects of Na+-Ca2+ exchanger activity on the alpha-amino-3-hydroxy-5-methyl-4-isoxazolone-propionate-induced Ca2+ influx in cerebellar Purkinje neurons. Kim YT; Park YJ; Jung SY; Seo WS; Suh CK Neuroscience; 2005; 131(3):589-99. PubMed ID: 15730865 [TBL] [Abstract][Full Text] [Related]
3. Deficiency in parvalbumin, but not in calbindin D-28k upregulates mitochondrial volume and decreases smooth endoplasmic reticulum surface selectively in a peripheral, subplasmalemmal region in the soma of Purkinje cells. Chen G; Racay P; Bichet S; Celio MR; Eggli P; Schwaller B Neuroscience; 2006 Sep; 142(1):97-105. PubMed ID: 16860487 [TBL] [Abstract][Full Text] [Related]
4. Insulin-like growth factor I is an afferent trophic signal that modulates calbindin-28kD in adult Purkinje cells. Nieto-Bona MP; Busiguina S; Torres-Aleman I J Neurosci Res; 1995 Oct; 42(3):371-6. PubMed ID: 8583505 [TBL] [Abstract][Full Text] [Related]
5. Aligned neurite bundles of granule cells regulate orientation of Purkinje cell dendrites by perpendicular contact guidance in two-dimensional and three-dimensional mouse cerebellar cultures. Nagata I; Ono K; Kawana A; Kimura-Kuroda J J Comp Neurol; 2006 Nov; 499(2):274-89. PubMed ID: 16977618 [TBL] [Abstract][Full Text] [Related]
6. Immunohistochemical localization of calbindin D28-k, parvalbumin, and calretinin in the cerebellar cortex of the circling mouse. Maskey D; Pradhan J; Kim HJ; Park KS; Ahn SC; Kim MJ Neurosci Lett; 2010 Oct; 483(2):132-6. PubMed ID: 20691752 [TBL] [Abstract][Full Text] [Related]
7. Dynamic patterns of colocalization of calbindin, parvalbumin and GABA in subpopulations of mouse basolateral amygdalar cells during development. Dávila JC; Olmos L; Legaz I; Medina L; Guirado S; Real MA J Chem Neuroanat; 2008 Jan; 35(1):67-76. PubMed ID: 17681450 [TBL] [Abstract][Full Text] [Related]
8. Detection of Purkinje cell loss following drug exposures to developing rat pups using reverse transcriptase-polymerase chain reaction (RT-PCR) analysis for calbindin-D28k mRNA expression. Ge Y; Belcher SM; Pierce DR; Light KE Toxicol Lett; 2004 May; 150(3):325-34. PubMed ID: 15110084 [TBL] [Abstract][Full Text] [Related]
9. Reduced immunoreactivity to calcium-binding proteins in Purkinje cells precedes onset of ataxia in spinocerebellar ataxia-1 transgenic mice. Vig PJ; Subramony SH; Burright EN; Fratkin JD; McDaniel DO; Desaiah D; Qin Z Neurology; 1998 Jan; 50(1):106-13. PubMed ID: 9443466 [TBL] [Abstract][Full Text] [Related]
10. The role of parvalbumin and calbindin D28k in experimental scrapie. Voigtländer T; Unterberger U; Guentchev M; Schwaller B; Celio MR; Meyer M; Budka H Neuropathol Appl Neurobiol; 2008 Aug; 34(4):435-45. PubMed ID: 18005331 [TBL] [Abstract][Full Text] [Related]
11. Mutational analysis of dendritic Ca2+ kinetics in rodent Purkinje cells: role of parvalbumin and calbindin D28k. Schmidt H; Stiefel KM; Racay P; Schwaller B; Eilers J J Physiol; 2003 Aug; 551(Pt 1):13-32. PubMed ID: 12813159 [TBL] [Abstract][Full Text] [Related]
12. Differences in locomotor behavior revealed in mice deficient for the calcium-binding proteins parvalbumin, calbindin D-28k or both. Farré-Castany MA; Schwaller B; Gregory P; Barski J; Mariethoz C; Eriksson JL; Tetko IV; Wolfer D; Celio MR; Schmutz I; Albrecht U; Villa AE Behav Brain Res; 2007 Mar; 178(2):250-61. PubMed ID: 17275105 [TBL] [Abstract][Full Text] [Related]
14. Purkinje cell survival in organotypic cultures: implication of Rho and its downstream effector ROCK. Julien S; Schnichels S; Teng H; Tassew N; Henke-Fahle S; Mueller BK; Monnier PP J Neurosci Res; 2008 Feb; 86(3):531-6. PubMed ID: 17893923 [TBL] [Abstract][Full Text] [Related]
15. Ontogeny of subunits 2 and 3 of the AMPA-type glutamate receptors in Purkinje cells of the developing chick cerebellum. Pires RS; Real CC; Hayashi MA; Britto LR Brain Res; 2006 Jun; 1096(1):11-9. PubMed ID: 16730338 [TBL] [Abstract][Full Text] [Related]
17. Aldolase C-positive cerebellar Purkinje cells are resistant to delayed death after cerebral trauma and AMPA-mediated excitotoxicity. Slemmer JE; Haasdijk ED; Engel DC; Plesnila N; Weber JT Eur J Neurosci; 2007 Aug; 26(3):649-56. PubMed ID: 17686042 [TBL] [Abstract][Full Text] [Related]
18. Co-existence of calcium-binding proteins and gamma-aminobutyric acid or glycine in neurons of the rat medullary dorsal horn. Wang W; Wu SX; Li YQ Chin Med J (Engl); 2004 Mar; 117(3):430-3. PubMed ID: 15043786 [TBL] [Abstract][Full Text] [Related]
19. Selective rather than inductive mechanisms favour specific replacement of Purkinje cells by embryonic cerebellar cells transplanted to the cerebellum of adult Purkinje cell degeneration (pcd) mutant mice. Carletti B; Rossi F Eur J Neurosci; 2005 Sep; 22(5):1001-12. PubMed ID: 16176342 [TBL] [Abstract][Full Text] [Related]
20. Mono- and dual-frequency fast cerebellar oscillation in mice lacking parvalbumin and/or calbindin D-28k. Servais L; Bearzatto B; Schwaller B; Dumont M; De Saedeleer C; Dan B; Barski JJ; Schiffmann SN; Cheron G Eur J Neurosci; 2005 Aug; 22(4):861-70. PubMed ID: 16115209 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]