These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 10510060)

  • 1. Regulation of shear stress in the canine coronary microcirculation.
    Stepp DW; Nishikawa Y; Chilian WM
    Circulation; 1999 Oct; 100(14):1555-61. PubMed ID: 10510060
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of nitric oxide in the coronary microvascular responses to adenosine and increased metabolic demand.
    Jones CJ; Kuo L; Davis MJ; DeFily DV; Chilian WM
    Circulation; 1995 Mar; 91(6):1807-13. PubMed ID: 7882491
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Longitudinal gradients for endothelium-dependent and -independent vascular responses in the coronary microcirculation.
    Kuo L; Davis MJ; Chilian WM
    Circulation; 1995 Aug; 92(3):518-25. PubMed ID: 7543382
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Important role of endogenous hydrogen peroxide in pacing-induced metabolic coronary vasodilation in dogs in vivo.
    Yada T; Shimokawa H; Hiramatsu O; Shinozaki Y; Mori H; Goto M; Ogasawara Y; Kajiya F
    J Am Coll Cardiol; 2007 Sep; 50(13):1272-8. PubMed ID: 17888845
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Endothelium-dependent relaxation competes with alpha 1- and alpha 2-adrenergic constriction in the canine epicardial coronary microcirculation.
    Jones CJ; DeFily DV; Patterson JL; Chilian WM
    Circulation; 1993 Apr; 87(4):1264-74. PubMed ID: 8384938
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nitric oxide limits coronary vasoconstriction by a shear stress-dependent mechanism.
    Stepp DW; Merkus D; Nishikawa Y; Chilian WM
    Am J Physiol Heart Circ Physiol; 2001 Aug; 281(2):H796-803. PubMed ID: 11454584
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interaction between adenosine and flow-induced dilation in coronary microvascular network.
    Liao JC; Kuo L
    Am J Physiol; 1997 Apr; 272(4 Pt 2):H1571-81. PubMed ID: 9139938
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of coronary blood flow during exercise.
    Duncker DJ; Bache RJ
    Physiol Rev; 2008 Jul; 88(3):1009-86. PubMed ID: 18626066
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Contribution of nitric oxide to metabolic coronary vasodilation in the human heart.
    Quyyumi AA; Dakak N; Andrews NP; Gilligan DM; Panza JA; Cannon RO
    Circulation; 1995 Aug; 92(3):320-6. PubMed ID: 7634444
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Changes in coronary endothelial cell Ca2+ concentration during shear stress- and agonist-induced vasodilation.
    Muller JM; Davis MJ; Kuo L; Chilian WM
    Am J Physiol; 1999 May; 276(5):H1706-14. PubMed ID: 10330257
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Contribution of nitric oxide to coronary vasodilation during hypercapnic acidosis.
    Gurevicius J; Salem MR; Metwally AA; Silver JM; Crystal GJ
    Am J Physiol; 1995 Jan; 268(1 Pt 2):H39-47. PubMed ID: 7530920
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stent implantation alters coronary artery hemodynamics and wall shear stress during maximal vasodilation.
    LaDisa JF; Hettrick DA; Olson LE; Guler I; Gross ER; Kress TT; Kersten JR; Warltier DC; Pagel PS
    J Appl Physiol (1985); 2002 Dec; 93(6):1939-46. PubMed ID: 12391052
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vivo location and mechanism of EDHF-mediated vasodilation in canine coronary microcirculation.
    Nishikawa Y; Stepp DW; Chilian WM
    Am J Physiol; 1999 Sep; 277(3):H1252-9. PubMed ID: 10484447
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nitric oxide mediates flow-dependent epicardial coronary vasodilation to changes in pulse frequency but not mean flow in conscious dogs.
    Canty JM; Schwartz JS
    Circulation; 1994 Jan; 89(1):375-84. PubMed ID: 8281673
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acetylcholine-induced and nitric oxide-mediated vasodilation in burns.
    Meng F; Korompai FL; Lynch DM; Yuan YS
    J Surg Res; 1998 Dec; 80(2):236-42. PubMed ID: 9878319
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Contribution of vasodilator prostanoids and nitric oxide to resting flow, metabolic vasodilation, and flow-mediated dilation in human coronary circulation.
    Duffy SJ; Castle SF; Harper RW; Meredith IT
    Circulation; 1999 Nov; 100(19):1951-7. PubMed ID: 10556220
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cytochrome P-450 pathway in acetylcholine-induced canine coronary microvascular vasodilation in vivo.
    Widmann MD; Weintraub NL; Fudge JL; Brooks LA; Dellsperger KC
    Am J Physiol; 1998 Jan; 274(1):H283-9. PubMed ID: 9458878
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Endothelium-mediated control of coronary vascular tone after chronic exercise training.
    Laughlin MH
    Med Sci Sports Exerc; 1995 Aug; 27(8):1135-44. PubMed ID: 7476057
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vivo and in vitro vasoactive reactions of coronary arteriolar microvessels to nitroglycerin.
    Jones CJ; Kuo L; Davis MJ; Chilian WM
    Am J Physiol; 1996 Aug; 271(2 Pt 2):H461-8. PubMed ID: 8770085
    [TBL] [Abstract][Full Text] [Related]  

  • 20. EDRF and norepinephrine-induced vasodilation in the canine coronary circulation.
    Van Bibber R; Traub O; Kroll K; Feigl EO
    Am J Physiol; 1995 May; 268(5 Pt 2):H1973-81. PubMed ID: 7771547
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.