These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
386 related articles for article (PubMed ID: 10510306)
1. Identification of Arg-12 in the active site of Escherichia coli K1 CMP-sialic acid synthetase. Stoughton DM; Zapata G; Picone R; Vann WF Biochem J; 1999 Oct; 343 Pt 2(Pt 2):397-402. PubMed ID: 10510306 [TBL] [Abstract][Full Text] [Related]
2. [Minimal functional domain of cytidine 5'-monophosphate N-acetylneuraminic acid (CMP-NeuAc) synthetase from Escherichia coli]. Jin CS; Jin C Sheng Wu Gong Cheng Xue Bao; 2002 Nov; 18(6):676-82. PubMed ID: 12674636 [TBL] [Abstract][Full Text] [Related]
3. Identification of lysine 122 and arginine 196 as important functional residues of rat CTP:phosphocholine cytidylyltransferase alpha. Helmink BA; Braker JD; Kent C; Friesen JA Biochemistry; 2003 May; 42(17):5043-51. PubMed ID: 12718547 [TBL] [Abstract][Full Text] [Related]
4. Identification of arginine 331 as an important active site residue in the class II fructose-1,6-bisphosphate aldolase of Escherichia coli. Qamar S; Marsh K; Berry A Protein Sci; 1996 Jan; 5(1):154-61. PubMed ID: 8771208 [TBL] [Abstract][Full Text] [Related]
5. Characterization of recombinant Saccharomyces cerevisiae manganese-containing superoxide dismutase and its H30A and K170R mutants expressed in Escherichia coli. Borders CL; Bjerrum MJ; Schirmer MA; Oliver SG Biochemistry; 1998 Aug; 37(32):11323-31. PubMed ID: 9698380 [TBL] [Abstract][Full Text] [Related]
6. Analysis of conserved basic residues associated with DNA binding (Arg69) and catalysis (Lys76) by the RusA holliday junction resolvase. Bolt EL; Sharples GJ; Lloyd RG J Mol Biol; 2000 Nov; 304(2):165-76. PubMed ID: 11080453 [TBL] [Abstract][Full Text] [Related]
7. Mutational analysis of conserved glycine residues 142, 143 and 146 reveals Gly(142) is critical for tetramerization of CTP synthase from Escherichia coli. Lunn FA; Macleod TJ; Bearne SL Biochem J; 2008 May; 412(1):113-21. PubMed ID: 18260824 [TBL] [Abstract][Full Text] [Related]
8. Catalytic role for arginine 188 in the C-C hydrolase catalytic mechanism for Escherichia coli MhpC and Burkholderia xenovorans LB400 BphD. Li C; Li JJ; Montgomery MG; Wood SP; Bugg TD Biochemistry; 2006 Oct; 45(41):12470-9. PubMed ID: 17029402 [TBL] [Abstract][Full Text] [Related]
9. The roles of active-site residues in the catalytic mechanism of trans-3-chloroacrylic acid dehalogenase: a kinetic, NMR, and mutational analysis. Azurmendi HF; Wang SC; Massiah MA; Poelarends GJ; Whitman CP; Mildvan AS Biochemistry; 2004 Apr; 43(14):4082-91. PubMed ID: 15065850 [TBL] [Abstract][Full Text] [Related]
10. Conserved and nonconserved residues in the substrate binding site of 7,8-diaminopelargonic acid synthase from Escherichia coli are essential for catalysis. Sandmark J; Eliot AC; Famm K; Schneider G; Kirsch JF Biochemistry; 2004 Feb; 43(5):1213-22. PubMed ID: 14756557 [TBL] [Abstract][Full Text] [Related]
11. Role of arginine 439 in substrate binding of 5-aminolevulinate synthase. Tan D; Harrison T; Hunter GA; Ferreira GC Biochemistry; 1998 Feb; 37(6):1478-84. PubMed ID: 9484217 [TBL] [Abstract][Full Text] [Related]
12. Sugar specificity of bacterial CMP kinases as revealed by crystal structures and mutagenesis of Escherichia coli enzyme. Bertrand T; Briozzo P; Assairi L; Ofiteru A; Bucurenci N; Munier-Lehmann H; Golinelli-Pimpaneau B; Bârzu O; Gilles AM J Mol Biol; 2002 Feb; 315(5):1099-110. PubMed ID: 11827479 [TBL] [Abstract][Full Text] [Related]
13. The rainbow trout CMP-sialic acid synthetase utilises a nuclear localization signal different from that identified in the mouse enzyme. Tiralongo J; Fujita A; Sato C; Kitajima K; Lehmann F; Oschlies M; Gerardy-Schahn R; Münster-Kühnel AK Glycobiology; 2007 Sep; 17(9):945-54. PubMed ID: 17580313 [TBL] [Abstract][Full Text] [Related]
14. Nuclear localization signal of murine CMP-Neu5Ac synthetase includes residues required for both nuclear targeting and enzymatic activity. Munster AK; Weinhold B; Gotza B; Muhlenhoff M; Frosch M; Gerardy-Schahn R J Biol Chem; 2002 May; 277(22):19688-96. PubMed ID: 11893746 [TBL] [Abstract][Full Text] [Related]
15. The structure of CMP:2-keto-3-deoxy-manno-octonic acid synthetase and of its complexes with substrates and substrate analogs. Jelakovic S; Schulz GE J Mol Biol; 2001 Sep; 312(1):143-55. PubMed ID: 11545592 [TBL] [Abstract][Full Text] [Related]
16. The tRNA-dependent activation of arginine by arginyl-tRNA synthetase requires inter-domain communication. Lazard M; Agou F; Kerjan P; Mirande M J Mol Biol; 2000 Sep; 302(4):991-1004. PubMed ID: 10993737 [TBL] [Abstract][Full Text] [Related]
17. Chemoenzymatic synthesis of CMP-sialic acid derivatives by a one-pot two-enzyme system: comparison of substrate flexibility of three microbial CMP-sialic acid synthetases. Yu H; Yu H; Karpel R; Chen X Bioorg Med Chem; 2004 Dec; 12(24):6427-35. PubMed ID: 15556760 [TBL] [Abstract][Full Text] [Related]
18. Site-directed mutagenesis of lysine382, the activator-binding site, of ADP-glucose pyrophosphorylase from Anabaena PCC 7120. Sheng J; Charng YY; Preiss J Biochemistry; 1996 Mar; 35(9):3115-21. PubMed ID: 8608152 [TBL] [Abstract][Full Text] [Related]
19. Involvement of arginine 143 in nucleotide substrate binding at the active site of adenylosuccinate synthetase from Escherichia coli. Moe OA; Baker-Malcolm JF; Wang W; Kang C; Fromm HJ; Colman RF Biochemistry; 1996 Jul; 35(28):9024-33. PubMed ID: 8703905 [TBL] [Abstract][Full Text] [Related]
20. The role of beta-Arg-182, an essential catalytic site residue in Escherichia coli F1-ATPase. Nadanaciva S; Weber J; Senior AE Biochemistry; 1999 Jun; 38(24):7670-7. PubMed ID: 10387006 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]