BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

441 related articles for article (PubMed ID: 10510313)

  • 1. Molecular modelling indicates that the pathological conformations of prion proteins might be beta-helical.
    Downing DT; Lazo ND
    Biochem J; 1999 Oct; 343 Pt 2(Pt 2):453-60. PubMed ID: 10510313
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spontaneous beta-helical fold in prion protein: the case of PrP(82-146).
    Saracino GA; Villa A; Moro G; Cosentino U; Salmona M
    Proteins; 2009 Jun; 75(4):964-76. PubMed ID: 19089953
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular model of an alpha-helical prion protein dimer and its monomeric subunits as derived from chemical cross-linking and molecular modeling calculations.
    Kaimann T; Metzger S; Kuhlmann K; Brandt B; Birkmann E; Höltje HD; Riesner D
    J Mol Biol; 2008 Feb; 376(2):582-96. PubMed ID: 18158160
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Horse prion protein NMR structure and comparisons with related variants of the mouse prion protein.
    Pérez DR; Damberger FF; Wüthrich K
    J Mol Biol; 2010 Jul; 400(2):121-8. PubMed ID: 20460128
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chicken prion tandem repeats form a stable, protease-resistant domain.
    Marcotte EM; Eisenberg D
    Biochemistry; 1999 Jan; 38(2):667-76. PubMed ID: 9888807
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Toward the molecular basis of inherited prion diseases: NMR structure of the human prion protein with V210I mutation.
    Biljan I; Ilc G; Giachin G; Raspadori A; Zhukov I; Plavec J; Legname G
    J Mol Biol; 2011 Sep; 412(4):660-73. PubMed ID: 21839748
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Familial prion disease mutation alters the secondary structure of recombinant mouse prion protein: implications for the mechanism of prion formation.
    Cappai R; Stewart L; Jobling MF; Thyer JM; White AR; Beyreuther K; Collins SJ; Masters CL; Barrow CJ
    Biochemistry; 1999 Mar; 38(11):3280-4. PubMed ID: 10079070
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Polymorphism at residue 129 modulates the conformational conversion of the D178N variant of human prion protein 90-231.
    Apetri AC; Vanik DL; Surewicz WK
    Biochemistry; 2005 Dec; 44(48):15880-8. PubMed ID: 16313190
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The 118-135 peptide of the human prion protein forms amyloid fibrils and induces liposome fusion.
    Pillot T; Lins L; Goethals M; Vanloo B; Baert J; Vandekerckhove J; Rosseneu M; Brasseur R
    J Mol Biol; 1997 Dec; 274(3):381-93. PubMed ID: 9405147
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrogen/deuterium exchange mass spectrometry identifies two highly protected regions in recombinant full-length prion protein amyloid fibrils.
    Nazabal A; Hornemann S; Aguzzi A; Zenobi R
    J Mass Spectrom; 2009 Jun; 44(6):965-77. PubMed ID: 19283723
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [A turning point in the knowledge of the structure-function-activity relations of elastin].
    Alix AJ
    J Soc Biol; 2001; 195(2):181-93. PubMed ID: 11727705
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Copper(II) inhibits in vitro conversion of prion protein into amyloid fibrils.
    Bocharova OV; Breydo L; Salnikov VV; Baskakov IV
    Biochemistry; 2005 May; 44(18):6776-87. PubMed ID: 15865423
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Core structure of amyloid fibrils formed by residues 106-126 of the human prion protein.
    Walsh P; Simonetti K; Sharpe S
    Structure; 2009 Mar; 17(3):417-26. PubMed ID: 19278656
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Autonomous and reversible folding of a soluble amino-terminally truncated segment of the mouse prion protein.
    Hornemann S; Glockshuber R
    J Mol Biol; 1996 Sep; 261(5):614-9. PubMed ID: 8800210
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Molecular bases of prion diseases].
    Rać M; Rać M
    Ann Acad Med Stetin; 2006; 52(3):5-13. PubMed ID: 17385343
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The key-role of tyrosine 155 in the mechanism of prion transconformation as highlighted by a study of sheep mutant peptides.
    Bertho G; Bouvier G; Hoa GH; Girault JP
    Peptides; 2008 Jul; 29(7):1073-84. PubMed ID: 18455265
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Solution structure of Syrian hamster prion protein rPrP(90-231).
    Liu H; Farr-Jones S; Ulyanov NB; Llinas M; Marqusee S; Groth D; Cohen FE; Prusiner SB; James TL
    Biochemistry; 1999 Apr; 38(17):5362-77. PubMed ID: 10220323
    [TBL] [Abstract][Full Text] [Related]  

  • 18. NMR structure of the mouse prion protein domain PrP(121-231).
    Riek R; Hornemann S; Wider G; Billeter M; Glockshuber R; Wüthrich K
    Nature; 1996 Jul; 382(6587):180-2. PubMed ID: 8700211
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prion diseases of humans and animals: their causes and molecular basis.
    Collinge J
    Annu Rev Neurosci; 2001; 24():519-50. PubMed ID: 11283320
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Amyloids, prions and the inherent infectious nature of misfolded protein aggregates.
    Soto C; Estrada L; Castilla J
    Trends Biochem Sci; 2006 Mar; 31(3):150-5. PubMed ID: 16473510
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.