BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 10511624)

  • 1. The role of intermodulation distortion in transient-evoked otoacoustic emissions.
    Yates GK; Withnell RH
    Hear Res; 1999 Oct; 136(1-2):49-64. PubMed ID: 10511624
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Delay dependence for the origin of the nonlinear derived transient evoked otoacoustic emission.
    Withnell RH; McKinley S
    J Acoust Soc Am; 2005 Jan; 117(1):281-91. PubMed ID: 15704421
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Changes to low-frequency components of the TEOAE following acoustic trauma to the base of the cochlea.
    Withnell RH; Yates GK; Kirk DL
    Hear Res; 2000 Jan; 139(1-2):1-12. PubMed ID: 10601708
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhancement of the transient-evoked otoacoustic emission produced by the addition of a pure tone in the guinea pig.
    Withnell RH; Yates GK
    J Acoust Soc Am; 1998 Jul; 104(1):344-9. PubMed ID: 9670527
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Near equivalence of human click-evoked and stimulus-frequency otoacoustic emissions.
    Kalluri R; Shera CA
    J Acoust Soc Am; 2007 Apr; 121(4):2097-110. PubMed ID: 17471725
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Otoacoustic emissions from ears with spontaneous activity behave differently to those without: Stronger responses to tone bursts as well as to clicks.
    Jedrzejczak WW; Kochanek K; Skarzynski H
    PLoS One; 2018; 13(2):e0192930. PubMed ID: 29451905
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Noise suppression of transient-evoked otoacoustic emissions. I. A comparison with the non-linear method.
    Molenaar DG; Shaw G; Eggermont JJ
    Hear Res; 2000 May; 143(1-2):197-207. PubMed ID: 10771197
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analyzing transient-evoked otoacoustic emissions by concentration of frequency and time.
    Wu HT; Liu YW
    J Acoust Soc Am; 2018 Jul; 144(1):448. PubMed ID: 30075682
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Long-term stability between click-evoked otoacoustic emissions and distortion product otoacoustic emissions in guinea pigs: A comparison.
    Hoshino M; Ueda H; Nakata S
    ORL J Otorhinolaryngol Relat Spec; 1999; 61(4):175-80. PubMed ID: 10450050
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrically evoked otoacoustic emissions from apical and basal perilymphatic electrode positions in the guinea pig cochlea.
    Nuttall AL; Zheng J; Ren T; de Boer E
    Hear Res; 2001 Feb; 152(1-2):77-89. PubMed ID: 11223283
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Amplitude and phase of distortion product otoacoustic emissions in the guinea pig in an (f1 ,f2) area study.
    Schneider S; Prijs VF; Schoonhoven R
    J Acoust Soc Am; 2003 Jun; 113(6):3285-96. PubMed ID: 12822801
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of primary frequencies ratio on distortion product otoacoustic emissions amplitude. II. Interrelations between multicomponent DPOAEs, tone-burst-evoked OAEs, and spontaneous OAEs.
    Moulin A
    J Acoust Soc Am; 2000 Mar; 107(3):1471-86. PubMed ID: 10738802
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An investigation into the relationship between input-output nonlinearities and rate-induced nonlinearities of click-evoked otoacoustic emissions recorded using maximum length sequences.
    Lineton B; Thornton AR; Baker VJ
    Hear Res; 2006 Sep; 219(1-2):24-35. PubMed ID: 16839721
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of stimulus bandwidth on the nonlinear-derived tone-burst-evoked otoacoustic emission.
    Lewis JD; Goodman SS
    J Assoc Res Otolaryngol; 2014 Dec; 15(6):915-31. PubMed ID: 25245497
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Otoacoustic emissions measured with a physically open recording system.
    Withnell RH; Kirk DL; Yates GK
    J Acoust Soc Am; 1998 Jul; 104(1):350-5. PubMed ID: 9670528
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transient evoked otoacoustic emissions can be recorded in the rat.
    Khvoles R; Freeman S; Sohmer H
    Hear Res; 1996 Aug; 97(1-2):120-6. PubMed ID: 8844192
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evoked otoacoustic emissions arise by two fundamentally different mechanisms: a taxonomy for mammalian OAEs.
    Shera CA; Guinan JJ
    J Acoust Soc Am; 1999 Feb; 105(2 Pt 1):782-98. PubMed ID: 9972564
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Generation of DPOAEs in the guinea pig.
    Withnell RH; Shaffer LA; Talmadge CL
    Hear Res; 2003 Apr; 178(1-2):106-17. PubMed ID: 12684183
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Noise suppression of transient-evoked otoacoustic emissions. II. Derived narrow-band contributions.
    Molenaar DG; Shaw G; Eggermont JJ
    Hear Res; 2000 May; 143(1-2):208-22. PubMed ID: 10771198
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of click intensity on click-evoked otoacoustic emission waveforms: implications for the origin of emissions.
    Carvalho S; Büki B; Bonfils P; Avan P
    Hear Res; 2003 Jan; 175(1-2):215-25. PubMed ID: 12527140
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.