These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 10511630)

  • 21. Olivocochlear reflex effect on human distortion product otoacoustic emissions is largest at frequencies with distinct fine structure dips.
    Wagner W; Heppelmann G; Müller J; Janssen T; Zenner HP
    Hear Res; 2007 Jan; 223(1-2):83-92. PubMed ID: 17137736
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Rippling pattern of distortion product otoacoustic emissions evoked by high-frequency primaries in guinea pigs.
    Burwood GWS; Russell IJ; Lukashkin AN
    J Acoust Soc Am; 2017 Aug; 142(2):855. PubMed ID: 28863551
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effects of reversible noise exposure on the suppression tuning of rabbit distortion-product otoacoustic emissions.
    Howard MA; Stagner BB; Lonsbury-Martin BL; Martin GK
    J Acoust Soc Am; 2002 Jan; 111(1 Pt 1):285-96. PubMed ID: 11831802
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Long-term sound conditioning increases distortion product otoacoustic emission amplitudes and decreases olivocochlear efferent reflex strength.
    Peng JH; Tao ZZ; Huang ZW
    Neuroreport; 2007 Jul; 18(11):1167-70. PubMed ID: 17589320
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Distortion-product emissions in rabbit: II. Prediction of chronic-noise effects by brief pure-tone exposures.
    Mensh BD; Lonsbury-Martin BL; Martin GK
    Hear Res; 1993 Oct; 70(1):65-72. PubMed ID: 8276733
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Comparison of distortion product otoacoustic emissions in 28 inbred strains of mice.
    Martin GK; Vazquez AE; Jimenez AM; Stagner BB; Howard MA; Lonsbury-Martin BL
    Hear Res; 2007 Dec; 234(1-2):59-72. PubMed ID: 17997239
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Suppression tuning characteristics of the 2f1-f2 distortion product in cochlear microphonics and otoacoustic emissions].
    Fujimura K; Yoshida M; Makishima K
    Nihon Jibiinkoka Gakkai Kaiho; 1997 Aug; 100(8):839-45. PubMed ID: 9293764
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Distortion-product otoacoustic emission suppression growth in normal and noise-exposed rabbits.
    Porter CA; Martin GK; Stagner BB; Lonsbury-Martin BL
    J Acoust Soc Am; 2006 Aug; 120(2):884-900. PubMed ID: 16938977
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Distortion-product emissions in rabbit: I. Altered susceptibility to repeated pure-tone exposures.
    Mensh BD; Patterson MC; Whitehead ML; Lonsbury-Martin BL; Martin GK
    Hear Res; 1993 Oct; 70(1):50-64. PubMed ID: 8276732
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Evidence for a bipolar change in distortion product otoacoustic emissions during contralateral acoustic stimulation in humans.
    Müller J; Janssen T; Heppelmann G; Wagner W
    J Acoust Soc Am; 2005 Dec; 118(6):3747-56. PubMed ID: 16419819
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Physiopathological significance of distortion-product otoacoustic emissions at 2f1-f2 produced by high- versus low-level stimuli.
    Avan P; Bonfils P; Gilain L; Mom T
    J Acoust Soc Am; 2003 Jan; 113(1):430-41. PubMed ID: 12558280
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Evaluating cochlear function and the effects of noise exposure in the B6.CAST+Ahl mouse with distortion product otoacoustic emissions.
    Vázquez AE; Jimenez AM; Martin GK; Luebke AE; Lonsbury-Martin BL
    Hear Res; 2004 Aug; 194(1-2):87-96. PubMed ID: 15276680
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Breaking away: violation of distortion emission phase-frequency invariance at low frequencies.
    Dhar S; Rogers A; Abdala C
    J Acoust Soc Am; 2011 May; 129(5):3115-22. PubMed ID: 21568414
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Steep and shallow phase gradient distortion product otoacoustic emissions arising basal to the primary tones.
    Martin GK; Stagner BB; Fahey PF; Lonsbury-Martin BL
    J Acoust Soc Am; 2009 Mar; 125(3):EL85-92. PubMed ID: 19275280
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Characterizing distortion-product otoacoustic emission components across four species.
    Martin GK; Stagner BB; Chung YS; Lonsbury-Martin BL
    J Acoust Soc Am; 2011 May; 129(5):3090-103. PubMed ID: 21568412
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Amplitude modulation of DPOAEs by acoustic stimulation of the contralateral ear.
    Harrison RV; Sharma A; Brown T; Jiwani S; James AL
    Acta Otolaryngol; 2008 Apr; 128(4):404-7. PubMed ID: 18368574
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Measurement of medial olivocochlear efferent activity in humans: comparison of different distortion product otoacoustic emission-based paradigms.
    Wagner W; Heyd A
    Otol Neurotol; 2011 Oct; 32(8):1379-88. PubMed ID: 21921859
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Level dependence of distortion product otoacoustic emission phase is attributed to component mixing.
    Abdala C; Dhar S; Kalluri R
    J Acoust Soc Am; 2011 May; 129(5):3123-33. PubMed ID: 21568415
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Frequency responses of two- and three-tone distortion product otoacoustic emissions in Mongolian gerbils.
    Mills DM
    J Acoust Soc Am; 2000 May; 107(5 Pt 1):2586-602. PubMed ID: 10830382
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effect of contralateral pure tone stimulation on distortion emissions suggests a frequency-specific functioning of the efferent cochlear control.
    Althen H; Wittekindt A; Gaese B; Kössl M; Abel C
    J Neurophysiol; 2012 Apr; 107(7):1962-9. PubMed ID: 22262828
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.