BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 10512540)

  • 1. Nitration of internal tyrosine of cytochrome c probed by resonance Raman scattering.
    Quaroni L; Smith WE
    Biospectroscopy; 1999; 5(5 Suppl):S71-6. PubMed ID: 10512540
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Time course and site(s) of cytochrome c tyrosine nitration by peroxynitrite.
    Batthyány C; Souza JM; Durán R; Cassina A; Cerveñansky C; Radi R
    Biochemistry; 2005 Jun; 44(22):8038-46. PubMed ID: 15924423
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Resonance Raman investigations of cytochrome c conformational change upon interaction with the membranes of intact and Ca2+-exposed mitochondria.
    Berezhna S; Wohlrab H; Champion PM
    Biochemistry; 2003 May; 42(20):6149-58. PubMed ID: 12755617
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mutation of tyrosine-67 to phenylalanine in cytochrome c significantly alters the local heme environment.
    Berghuis AM; Guillemette JG; Smith M; Brayer GD
    J Mol Biol; 1994 Jan; 235(4):1326-41. PubMed ID: 8308895
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluating the potential of fluorinated tyrosines as spectroscopic probes of local protein environments: a UV resonance Raman study.
    Reid PJ; Loftus C; Beeson CC;
    Biochemistry; 2003 Mar; 42(8):2441-8. PubMed ID: 12600211
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of tyrosine 67 in the cytochrome c heme crevice structure studied by semisynthesis.
    Frauenhoff MM; Scott RA
    Proteins; 1992 Oct; 14(2):202-12. PubMed ID: 1329082
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The polarity of tyrosine 67 in yeast iso-1-cytochrome c monitored by second derivative spectroscopy.
    Schroeder HR; McOdimba FA; Guillemette JG; Kornblatt JA
    Biochem Cell Biol; 1997; 75(3):191-7. PubMed ID: 9404638
    [TBL] [Abstract][Full Text] [Related]  

  • 8. UV resonance Raman determination of protein acid denaturation: selective unfolding of helical segments of horse myoglobin.
    Chi Z; Asher SA
    Biochemistry; 1998 Mar; 37(9):2865-72. PubMed ID: 9485437
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrochemical nitration of myoglobin at tyrosine 103: structure and stability.
    Gómez-Mingot M; Alcaraz LA; Heptinstall J; Donaire A; Piccioli M; Montiel V; Iniesta J
    Arch Biochem Biophys; 2013 Jan; 529(1):26-33. PubMed ID: 23200748
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Folding of horse cytochrome c in the reduced state.
    Bhuyan AK; Udgaonkar JB
    J Mol Biol; 2001 Oct; 312(5):1135-60. PubMed ID: 11580255
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Perturbation of the redox site structure of cytochrome c variants upon tyrosine nitration.
    Ly HK; Utesch T; Díaz-Moreno I; García-Heredia JM; De La Rosa MÁ; Hildebrandt P
    J Phys Chem B; 2012 May; 116(19):5694-702. PubMed ID: 22540335
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Secondary and tertiary structure of the A-state of cytochrome c from resonance Raman spectroscopy.
    Jordan T; Eads JC; Spiro TG
    Protein Sci; 1995 Apr; 4(4):716-28. PubMed ID: 7613469
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rupture of the hydrogen bond linking two Omega-loops induces the molten globule state at neutral pH in cytochrome c.
    Sinibaldi F; Piro MC; Howes BD; Smulevich G; Ascoli F; Santucci R
    Biochemistry; 2003 Jun; 42(24):7604-10. PubMed ID: 12809517
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Raman and surface enhanced Raman spectroscopy of 2,2,5,5-tetramethyl-3-pyrrolin-1-yloxy-3-carboxamide labeled proteins: bovine serum albumin and cytochrome c.
    Cavalu S; Cîntă-Pînzaru S; Leopold N; Kiefer W
    Biopolymers; 2001; 62(6):341-8. PubMed ID: 11857273
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigation of tyrosine nitration in proteins by mass spectrometry.
    Petersson AS; Steen H; Kalume DE; Caidahl K; Roepstorff P
    J Mass Spectrom; 2001 Jun; 36(6):616-25. PubMed ID: 11433534
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Resonance Raman investigation of nickel microperoxidase-11.
    Ma JG; Vanderkooi JM; Zhang J; Jia SL; Shelnutt JA
    Biochemistry; 1999 Mar; 38(9):2787-95. PubMed ID: 10052950
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transient and time-resolved resonance Raman investigation of photoinitiated electron transfer in ruthenated cytochromes c.
    Simpson MC; Millett F; Pan LP; Larsen RW; Hobbs JD; Fan B; Ondrias MR
    Biochemistry; 1996 Aug; 35(31):10019-30. PubMed ID: 8756464
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interaction of nitric oxide with cytochrome P450 BM3.
    Quaroni LG; Seward HE; McLean KJ; Girvan HM; Ost TW; Noble MA; Kelly SM; Price NC; Cheesman MR; Smith WE; Munro AW
    Biochemistry; 2004 Dec; 43(51):16416-31. PubMed ID: 15610036
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protonation of two adjacent tyrosine residues influences the reduction of cytochrome c by diphenylacetaldehyde: a possible mechanism to select the reducer agent of heme iron.
    Rinaldi TA; Tersariol IL; Dyszy FH; Prado FM; Nascimento OR; Di Mascio P; Nantes IL
    Free Radic Biol Med; 2004 Mar; 36(6):802-10. PubMed ID: 14990358
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Resonance Raman scattering of cytochrome P450 BM3 and effect of imidazole inhibitors.
    Smith SJ; Munro AW; Smith WE
    Biopolymers; 2003 Dec; 70(4):620-7. PubMed ID: 14648772
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.