BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 10512632)

  • 1. Disulfide bonds in the outer layer of keratin fibers confer higher mechanical rigidity: correlative nano-indentation and elasticity measurement with an AFM.
    Parbhu AN; Bryson WG; Lal R
    Biochemistry; 1999 Sep; 38(36):11755-61. PubMed ID: 10512632
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Relevance and Evaluation of Hydrogen and Disulfide Bond Contribution to the Mechanics of Hard α-Keratin Fibers.
    Breakspear S; Noecker B; Popescu C
    J Phys Chem B; 2019 May; 123(21):4505-4511. PubMed ID: 31067053
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The susceptibility of disulfide bonds to modification in keratin fibers undergoing tensile stress.
    Harland DP; Popescu C; Richena M; Deb-Choudhury S; Wichlatz C; Lee E; Plowman JE
    Biophys J; 2022 Jun; 121(11):2168-2179. PubMed ID: 35477858
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lamellar subcomponents of the cuticular cell membrane complex of mammalian keratin fibres show friction and hardness contrast by AFM.
    Smith JR; Swift JA
    J Microsc; 2002 Jun; 206(Pt 3):182-93. PubMed ID: 12067362
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nano-mechanical exploration of the surface and sub-surface of hydrated cells of Staphylococcus epidermidis.
    Méndez-Vilas A; Gallardo-Moreno AM; González-Martín ML
    Antonie Van Leeuwenhoek; 2006; 89(3-4):373-86. PubMed ID: 16779634
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanoscale strain-hardening of keratin fibres.
    Fortier P; Suei S; Kreplak L
    PLoS One; 2012; 7(7):e41814. PubMed ID: 22848616
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Viscoelastic properties of α-keratin fibers in hair.
    Yu Y; Yang W; André Meyers M
    Acta Biomater; 2017 Dec; 64():15-28. PubMed ID: 28919511
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vitro assembly and structure of trichocyte keratin intermediate filaments: a novel role for stabilization by disulfide bonding.
    Wang H; Parry DA; Jones LN; Idler WW; Marekov LN; Steinert PM
    J Cell Biol; 2000 Dec; 151(7):1459-68. PubMed ID: 11134075
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dehomogenized Elastic Properties of Heterogeneous Layered Materials in AFM Indentation Experiments.
    Lee JJ; Rao S; Kaushik G; Azeloglu EU; Costa KD
    Biophys J; 2018 Jun; 114(11):2717-2731. PubMed ID: 29874620
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microscopical investigations on the epicuticle of mammalian keratin fibres.
    Swift JA; Smith JR
    J Microsc; 2001 Dec; 204(Pt 3):203-11. PubMed ID: 11903797
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interspecies comparison of morphology, ultrastructure, and proteome of mammalian keratin fibers of similar diameter.
    Thomas A; Harland DP; Clerens S; Deb-Choudhury S; Vernon JA; Krsinic GL; Walls RJ; Cornellison CD; Plowman JE; Dyer JM
    J Agric Food Chem; 2012 Mar; 60(10):2434-46. PubMed ID: 22329728
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Non-Hertzian approach to analyzing mechanical properties of endothelial cells probed by atomic force microscopy.
    Costa KD; Sim AJ; Yin FC
    J Biomech Eng; 2006 Apr; 128(2):176-84. PubMed ID: 16524328
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure and mechanical properties of human trichocyte keratin intermediate filament protein.
    Chou CC; Buehler MJ
    Biomacromolecules; 2012 Nov; 13(11):3522-32. PubMed ID: 22963508
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Finite element modeling of living cells for AFM indentation-based biomechanical characterization.
    Liu Y; Mollaeian K; Ren J
    Micron; 2019 Jan; 116():108-115. PubMed ID: 30366196
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanomechanical characterization of polyaniline coated tobacco mosaic virus nanotubes.
    Wang X; Niu Z; Li S; Wang Q; Li X
    J Biomed Mater Res A; 2008 Oct; 87(1):8-14. PubMed ID: 18080295
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Atomic force microscopy for biomechanical and structural analysis of human dermis: A complementary tool for medical diagnosis and therapy monitoring.
    Peñuela L; Negro C; Massa M; Repaci E; Cozzani E; Parodi A; Scaglione S; Quarto R; Raiteri R
    Exp Dermatol; 2018 Feb; 27(2):150-155. PubMed ID: 29152798
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microscale mechanical properties of single elastic fibers: the role of fibrillin-microfibrils.
    Koenders MM; Yang L; Wismans RG; van der Werf KO; Reinhardt DP; Daamen W; Bennink ML; Dijkstra PJ; van Kuppevelt TH; Feijen J
    Biomaterials; 2009 May; 30(13):2425-32. PubMed ID: 19217657
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamic elastic modulus of porcine articular cartilage determined at two different levels of tissue organization by indentation-type atomic force microscopy.
    Stolz M; Raiteri R; Daniels AU; VanLandingham MR; Baschong W; Aebi U
    Biophys J; 2004 May; 86(5):3269-83. PubMed ID: 15111440
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spatial organization of cellulose microfibrils and matrix polysaccharides in primary plant cell walls as imaged by multichannel atomic force microscopy.
    Zhang T; Zheng Y; Cosgrove DJ
    Plant J; 2016 Jan; 85(2):179-92. PubMed ID: 26676644
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Combining atomic force-fluorescence microscopy with a stretching device for analyzing mechanotransduction processes in living cells.
    Hecht E; Knittel P; Felder E; Dietl P; Mizaikoff B; Kranz C
    Analyst; 2012 Nov; 137(22):5208-14. PubMed ID: 22977882
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.