BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

343 related articles for article (PubMed ID: 10512706)

  • 1. Structural analysis of a non-contiguous second-site revertant in T4 lysozyme shows that increasing the rigidity of a protein can enhance its stability.
    Wray JW; Baase WA; Lindstrom JD; Weaver LH; Poteete AR; Matthews BW
    J Mol Biol; 1999 Oct; 292(5):1111-20. PubMed ID: 10512706
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Similar hydrophobic replacements of Leu99 and Phe153 within the core of T4 lysozyme have different structural and thermodynamic consequences.
    Eriksson AE; Baase WA; Matthews BW
    J Mol Biol; 1993 Feb; 229(3):747-69. PubMed ID: 8433369
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Alanine scanning mutagenesis of the alpha-helix 115-123 of phage T4 lysozyme: effects on structure, stability and the binding of solvent.
    Blaber M; Baase WA; Gassner N; Matthews BW
    J Mol Biol; 1995 Feb; 246(2):317-30. PubMed ID: 7869383
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The introduction of strain and its effects on the structure and stability of T4 lysozyme.
    Liu R; Baase WA; Matthews BW
    J Mol Biol; 2000 Jan; 295(1):127-45. PubMed ID: 10623513
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermodynamic and structural compensation in "size-switch" core repacking variants of bacteriophage T4 lysozyme.
    Baldwin E; Xu J; Hajiseyedjavadi O; Baase WA; Matthews BW
    J Mol Biol; 1996 Jun; 259(3):542-59. PubMed ID: 8676387
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Size versus polarizability in protein-ligand interactions: binding of noble gases within engineered cavities in phage T4 lysozyme.
    Quillin ML; Breyer WA; Griswold IJ; Matthews BW
    J Mol Biol; 2000 Sep; 302(4):955-77. PubMed ID: 10993735
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Use of stabilizing mutations to engineer a charged group within a ligand-binding hydrophobic cavity in T4 lysozyme.
    Liu L; Baase WA; Michael MM; Matthews BW
    Biochemistry; 2009 Sep; 48(37):8842-51. PubMed ID: 19663503
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Relocation or duplication of the helix A sequence of T4 lysozyme causes only modest changes in structure but can increase or decrease the rate of folding.
    Sagermann M; Baase WA; Mooers BH; Gay L; Matthews BW
    Biochemistry; 2004 Feb; 43(5):1296-301. PubMed ID: 14756565
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Substitution with selenomethionine can enhance the stability of methionine-rich proteins.
    Gassner NC; Baase WA; Hausrath AC; Matthews BW
    J Mol Biol; 1999 Nov; 294(1):17-20. PubMed ID: 10556025
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Determination of alpha-helix propensity within the context of a folded protein. Sites 44 and 131 in bacteriophage T4 lysozyme.
    Blaber M; Zhang XJ; Lindstrom JD; Pepiot SD; Baase WA; Matthews BW
    J Mol Biol; 1994 Jan; 235(2):600-24. PubMed ID: 8289284
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Accommodation of amino acid insertions in an alpha-helix of T4 lysozyme. Structural and thermodynamic analysis.
    Heinz DW; Baase WA; Zhang XJ; Blaber M; Dahlquist FW; Matthews BW
    J Mol Biol; 1994 Feb; 236(3):869-86. PubMed ID: 8114100
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Control of bacteriophage T4 tail lysozyme activity during the infection process.
    Kanamaru S; Ishiwata Y; Suzuki T; Rossmann MG; Arisaka F
    J Mol Biol; 2005 Mar; 346(4):1013-20. PubMed ID: 15701513
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A mutant T4 lysozyme (Val 131----Ala) designed to increase thermostability by the reduction of strain within an alpha-helix.
    Dao-Pin S; Baase WA; Matthews BW
    Proteins; 1990; 7(2):198-204. PubMed ID: 2326253
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural and thermodynamic characterization of T4 lysozyme mutants and the contribution of internal cavities to pressure denaturation.
    Ando N; Barstow B; Baase WA; Fields A; Matthews BW; Gruner SM
    Biochemistry; 2008 Oct; 47(42):11097-109. PubMed ID: 18816066
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Motion of spin-labeled side chains in T4 lysozyme. Correlation with protein structure and dynamics.
    Mchaourab HS; Lietzow MA; Hideg K; Hubbell WL
    Biochemistry; 1996 Jun; 35(24):7692-704. PubMed ID: 8672470
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling protein-small molecule interactions: structure and thermodynamics of noble gases binding in a cavity in mutant phage T4 lysozyme L99A.
    Mann G; Hermans J
    J Mol Biol; 2000 Sep; 302(4):979-89. PubMed ID: 10993736
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protein flexibility and adaptability seen in 25 crystal forms of T4 lysozyme.
    Zhang XJ; Wozniak JA; Matthews BW
    J Mol Biol; 1995 Jul; 250(4):527-52. PubMed ID: 7616572
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Studying excited states of proteins by NMR spectroscopy.
    Mulder FA; Mittermaier A; Hon B; Dahlquist FW; Kay LE
    Nat Struct Biol; 2001 Nov; 8(11):932-5. PubMed ID: 11685237
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Relative importance of secondary structure and solvent accessibility to the stability of protein mutants. A case study with amino acid properties and energetics on T4 and human lysozymes.
    Saraboji K; Gromiha MM; Ponnuswamy MN
    Comput Biol Chem; 2005 Feb; 29(1):25-35. PubMed ID: 15680583
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multiple alanine replacements within alpha-helix 126-134 of T4 lysozyme have independent, additive effects on both structure and stability.
    Zhang XJ; Baase WA; Matthews BW
    Protein Sci; 1992 Jun; 1(6):761-76. PubMed ID: 1304917
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.