BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 10512813)

  • 21. Structure and dynamics of hydronium in the ion channel gramicidin A.
    Sagnella DE; Voth GA
    Biophys J; 1996 May; 70(5):2043-51. PubMed ID: 9172729
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Influence of hydrophobic mismatch on structures and dynamics of gramicidin a and lipid bilayers.
    Kim T; Lee KI; Morris P; Pastor RW; Andersen OS; Im W
    Biophys J; 2012 Apr; 102(7):1551-60. PubMed ID: 22500755
    [TBL] [Abstract][Full Text] [Related]  

  • 23. General anesthetic binding to gramicidin A: the structural requirements.
    Tang P; Eckenhoff RG; Xu Y
    Biophys J; 2000 Apr; 78(4):1804-9. PubMed ID: 10733961
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Determination of the structure of a membrane-incorporated ion channel. Solid-state nuclear magnetic resonance studies of gramicidin A.
    Smith R; Thomas DE; Separovic F; Atkins AR; Cornell BA
    Biophys J; 1989 Aug; 56(2):307-14. PubMed ID: 2476189
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Polar groups in membrane channels: consequences of replacing alanines with serines in membrane-spanning gramicidin channels.
    Daily AE; Kim JH; Greathouse DV; Andersen OS; Koeppe RE
    Biochemistry; 2010 Aug; 49(32):6856-65. PubMed ID: 20695525
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Orientations of the tryptophan 9 and 11 side chains of the gramicidin channel based on deuterium nuclear magnetic resonance spectroscopy.
    Koeppe RE; Killian JA; Greathouse DV
    Biophys J; 1994 Jan; 66(1):14-24. PubMed ID: 7510525
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Thermodynamic view of activation energies of proton transfer in various gramicidin A channels.
    Chernyshev A; Cukierman S
    Biophys J; 2002 Jan; 82(1 Pt 1):182-92. PubMed ID: 11751307
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Water accessibility to the tryptophan indole N-H sites of gramicidin A transmembrane channel: detection of positional shifts of tryptophans 11 and 13 along the channel axis upon cation binding.
    Maruyama T; Takeuchi H
    Biochemistry; 1997 Sep; 36(36):10993-1001. PubMed ID: 9283091
    [TBL] [Abstract][Full Text] [Related]  

  • 29. 2H nuclear magnetic resonance of the gramicidin A backbone in a phospholipid bilayer.
    Prosser RS; Davis JH; Dahlquist FW; Lindorfer MA
    Biochemistry; 1991 May; 30(19):4687-96. PubMed ID: 1709361
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Peptide backbone chemistry and membrane channel function: effects of a single amide-to-ester replacement on gramicidin channel structure and function.
    Jude AR; Providence LL; Schmutzer SE; Shobana S; Greathouse DV; Andersen OS; Koeppe R
    Biochemistry; 2001 Feb; 40(5):1460-72. PubMed ID: 11170474
    [TBL] [Abstract][Full Text] [Related]  

  • 31. An asymmetric ion channel derived from gramicidin A. Synthesis, function and NMR structure.
    Xie X; Al-Momani L; Reiss P; Griesinger C; Koert U
    FEBS J; 2005 Feb; 272(4):975-86. PubMed ID: 15691331
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Hydrogen exchange in the lipid bilayer-bound gramicidin channel.
    Huo S; Arumugam S; Cross TA
    Solid State Nucl Magn Reson; 1996 Dec; 7(3):177-83. PubMed ID: 9050155
    [TBL] [Abstract][Full Text] [Related]  

  • 33. NMR structure of C-terminally tagged gramicidin channels.
    Separovic F; Barker S; Delahunty M; Smith R
    Biochim Biophys Acta; 1999 Jan; 1416(1-2):48-56. PubMed ID: 9889316
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Kinetics of gramicidin channel formation in lipid bilayers: transmembrane monomer association.
    O'Connell AM; Koeppe RE; Andersen OS
    Science; 1990 Nov; 250(4985):1256-9. PubMed ID: 1700867
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Gramicidin A backbone and side chain dynamics evaluated by molecular dynamics simulations and nuclear magnetic resonance experiments. I: molecular dynamics simulations.
    Ingólfsson HI; Li Y; Vostrikov VV; Gu H; Hinton JF; Koeppe RE; Roux B; Andersen OS
    J Phys Chem B; 2011 Jun; 115(22):7417-26. PubMed ID: 21574563
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Gramicidin channels that have no tryptophan residues.
    Fonseca V; Daumas P; Ranjalahy-Rasoloarijao L; Heitz F; Lazaro R; Trudelle Y; Andersen OS
    Biochemistry; 1992 Jun; 31(23):5340-50. PubMed ID: 1376621
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Val(659)-->Glu mutation within the transmembrane domain of ErbB-2: effects measured by (2)H NMR in fluid phospholipid bilayers.
    Sharpe S; Barber KR; Grant CW
    Biochemistry; 2000 May; 39(21):6572-80. PubMed ID: 10828974
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Free energy calculations of gramicidin dimer dissociation.
    Wanasundara SN; Krishnamurthy V; Chung SH
    J Phys Chem B; 2011 Nov; 115(46):13765-70. PubMed ID: 21988458
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Formation of non-beta 6.3-helical gramicidin channels between sequence-substituted gramicidin analogues.
    Durkin JT; Providence LL; Koeppe RE; Andersen OS
    Biophys J; 1992 Apr; 62(1):145-57; discussion 157-9. PubMed ID: 1376164
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ion permeation through the gramicidin channel: atomically detailed modeling by the Stochastic Difference Equation.
    Siva K; Elber R
    Proteins; 2003 Jan; 50(1):63-80. PubMed ID: 12471600
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.