These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 10512814)

  • 1. Structure of the skeletal muscle calcium release channel activated with Ca2+ and AMP-PCP.
    Serysheva II; Schatz M; van Heel M; Chiu W; Hamilton SL
    Biophys J; 1999 Oct; 77(4):1936-44. PubMed ID: 10512814
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modification of ryanodine receptor/Ca2+ release channel with dinitrofluorobenzene.
    Hadad N; Feng W; Shoshan-Barmatz V
    Biochem J; 1999 Aug; 342 ( Pt 1)(Pt 1):239-48. PubMed ID: 10432322
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ca2+ stores regulate ryanodine receptor Ca2+ release channels via luminal and cytosolic Ca2+ sites.
    Laver DR
    Clin Exp Pharmacol Physiol; 2007 Sep; 34(9):889-96. PubMed ID: 17645636
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sarcoplasmic reticulum lumenal Ca2+ has access to cytosolic activation and inactivation sites of skeletal muscle Ca2+ release channel.
    Tripathy A; Meissner G
    Biophys J; 1996 Jun; 70(6):2600-15. PubMed ID: 8744299
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Calcium pool size modulates the sensitivity of the ryanodine receptor channel and calcium-dependent ATPase of heavy sarcoplasmic reticulum to extravesicular free calcium concentration.
    Marie V; Silva JE
    J Cell Physiol; 1998 Jun; 175(3):283-94. PubMed ID: 9572473
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The conformation of calsequestrin determines its ability to regulate skeletal ryanodine receptors.
    Wei L; Varsányi M; Dulhunty AF; Beard NA
    Biophys J; 2006 Aug; 91(4):1288-301. PubMed ID: 16698782
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Architecture and conformational switch mechanism of the ryanodine receptor.
    Efremov RG; Leitner A; Aebersold R; Raunser S
    Nature; 2015 Jan; 517(7532):39-43. PubMed ID: 25470059
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Peptide fragments of the dihydropyridine receptor can modulate cardiac ryanodine receptor channel activity and sarcoplasmic reticulum Ca2+ release.
    Dulhunty AF; Curtis SM; Cengia L; Sakowska M; Casarotto MG
    Biochem J; 2004 Apr; 379(Pt 1):161-72. PubMed ID: 14678014
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chicken skeletal muscle ryanodine receptor isoforms: ion channel properties.
    Percival AL; Williams AJ; Kenyon JL; Grinsell MM; Airey JA; Sutko JL
    Biophys J; 1994 Nov; 67(5):1834-50. PubMed ID: 7532019
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CLIC2-RyR1 interaction and structural characterization by cryo-electron microscopy.
    Meng X; Wang G; Viero C; Wang Q; Mi W; Su XD; Wagenknecht T; Williams AJ; Liu Z; Yin CC
    J Mol Biol; 2009 Mar; 387(2):320-34. PubMed ID: 19356589
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure of a mammalian ryanodine receptor.
    Zalk R; Clarke OB; des Georges A; Grassucci RA; Reiken S; Mancia F; Hendrickson WA; Frank J; Marks AR
    Nature; 2015 Jan; 517(7532):44-9. PubMed ID: 25470061
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Membrane topology and membrane retention of the ryanodine receptor calcium release channel.
    Ma J; Hayek SM; Bhat MB
    Cell Biochem Biophys; 2004; 40(2):207-24. PubMed ID: 15054223
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Luminal Mg2+, a key factor controlling RYR2-mediated Ca2+ release: cytoplasmic and luminal regulation modeled in a tetrameric channel.
    Laver DR; Honen BN
    J Gen Physiol; 2008 Oct; 132(4):429-46. PubMed ID: 18824590
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-resolution structure of the membrane-embedded skeletal muscle ryanodine receptor.
    Melville Z; Kim K; Clarke OB; Marks AR
    Structure; 2022 Jan; 30(1):172-180.e3. PubMed ID: 34469755
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Use-dependent inhibition of the skeletal muscle ryanodine receptor by the suramin analogue NF676.
    Wolner I; Kassack MU; Ullmann H; Karel A; Hohenegger M
    Br J Pharmacol; 2005 Oct; 146(4):525-33. PubMed ID: 16056233
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characteristics of irreversible ATP activation suggest that native skeletal ryanodine receptors can be phosphorylated via an endogenous CaMKII.
    Dulhunty AF; Laver D; Curtis SM; Pace S; Haarmann C; Gallant EM
    Biophys J; 2001 Dec; 81(6):3240-52. PubMed ID: 11720989
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Single-channel properties of the recombinant skeletal muscle Ca2+ release channel (ryanodine receptor).
    Chen SR; Leong P; Imredy JP; Bartlett C; Zhang L; MacLennan DH
    Biophys J; 1997 Oct; 73(4):1904-12. PubMed ID: 9336186
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interaction of S100A1 with the Ca2+ release channel (ryanodine receptor) of skeletal muscle.
    Treves S; Scutari E; Robert M; Groh S; Ottolia M; Prestipino G; Ronjat M; Zorzato F
    Biochemistry; 1997 Sep; 36(38):11496-503. PubMed ID: 9298970
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Two structural configurations of the skeletal muscle calcium release channel.
    Orlova EV; Serysheva II; van Heel M; Hamilton SL; Chiu W
    Nat Struct Biol; 1996 Jun; 3(6):547-52. PubMed ID: 8646541
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of bovine serum albumin on the calcium release channel of sarcoplasmic reticulum from rabbit skeletal muscle.
    Catinot MP; Bastide B; Montel V; Suarez-Kurtz G; Mounier Y
    Acta Physiol Scand; 1997 Jul; 160(3):199-205. PubMed ID: 9246382
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.