These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 10512814)

  • 21. Sarcoplasmic reticulum Ca2+ release and depletion fail to affect sarcolemmal ion channel activity in mouse skeletal muscle.
    Allard B; Couchoux H; Pouvreau S; Jacquemond V
    J Physiol; 2006 Aug; 575(Pt 1):69-81. PubMed ID: 16777939
    [TBL] [Abstract][Full Text] [Related]  

  • 22. ATP-induced activation of expressed RyR3 at low free calcium.
    Manunta M; Rossi D; Simeoni I; Butelli E; Romanin C; Sorrentino V; Schindler H
    FEBS Lett; 2000 Apr; 471(2-3):256-60. PubMed ID: 10767434
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Inhibition of the ryanodine receptor calcium channel in the sarcoplasmic reticulum of skeletal muscle by an ADP/ATP translocase inhibitor, atractyloside.
    Yamaguchi N; Kagari T; Kasai M
    Biochem Biophys Res Commun; 1999 May; 258(2):247-51. PubMed ID: 10329372
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Voltage dependence of cardiac excitation-contraction coupling: unitary Ca2+ current amplitude and open channel probability.
    Altamirano J; Bers DM
    Circ Res; 2007 Sep; 101(6):590-7. PubMed ID: 17641229
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Evidence for novel caffeine and Ca2+ binding sites on the lobster skeletal ryanodine receptor.
    Zhang JJ; Williams AJ; Sitsapesan R
    Br J Pharmacol; 1999 Feb; 126(4):1066-74. PubMed ID: 10193789
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Role of calcium feedback in excitation-contraction coupling in isolated triads.
    Yano M; el-Hayek R; Ikemoto N
    J Biol Chem; 1995 Aug; 270(34):19936-42. PubMed ID: 7650009
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Postulated role of interdomain interaction between regions 1 and 2 within type 1 ryanodine receptor in the pathogenesis of porcine malignant hyperthermia.
    Murayama T; Oba T; Hara H; Wakebe K; Ikemoto N; Ogawa Y
    Biochem J; 2007 Mar; 402(2):349-57. PubMed ID: 17107340
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Structural insights into excitation-contraction coupling by electron cryomicroscopy.
    Serysheva II
    Biochemistry (Mosc); 2004 Nov; 69(11):1226-32. PubMed ID: 15627376
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Bastadin 10 stabilizes the open conformation of the ryanodine-sensitive Ca(2+) channel in an FKBP12-dependent manner.
    Chen L; Molinski TF; Pessah IN
    J Biol Chem; 1999 Nov; 274(46):32603-12. PubMed ID: 10551814
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Functional calcium release channel formed by the carboxyl-terminal portion of ryanodine receptor.
    Bhat MB; Zhao J; Takeshima H; Ma J
    Biophys J; 1997 Sep; 73(3):1329-36. PubMed ID: 9284301
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Structure of the voltage-gated L-type Ca2+ channel by electron cryomicroscopy.
    Serysheva II; Ludtke SJ; Baker MR; Chiu W; Hamilton SL
    Proc Natl Acad Sci U S A; 2002 Aug; 99(16):10370-5. PubMed ID: 12149473
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The pore region of the skeletal muscle ryanodine receptor is a primary locus for excitation-contraction uncoupling in central core disease.
    Avila G; O'Connell KM; Dirksen RT
    J Gen Physiol; 2003 Apr; 121(4):277-86. PubMed ID: 12642598
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The skeletal muscle ryanodine receptor identified as a molecular target of [3H]azidodantrolene by photoaffinity labeling.
    Paul-Pletzer K; Palnitkar SS; Jimenez LS; Morimoto H; Parness J
    Biochemistry; 2001 Jan; 40(2):531-42. PubMed ID: 11148048
    [TBL] [Abstract][Full Text] [Related]  

  • 34. ATP-sensitive voltage- and calcium-dependent chloride channels in sarcoplasmic reticulum vesicles from rabbit skeletal muscle.
    Kourie JI
    J Membr Biol; 1997 May; 157(1):39-51. PubMed ID: 9141357
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Coordinated movement of cytoplasmic and transmembrane domains of RyR1 upon gating.
    Samsó M; Feng W; Pessah IN; Allen PD
    PLoS Biol; 2009 Apr; 7(4):e85. PubMed ID: 19402748
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Bisprasin, a novel Ca(2+) releaser with caffeine-like properties from a marine sponge, Dysidea spp., acts on Ca(2+)-induced Ca(2+) release channels of skeletal muscle sarcoplasmic reticulum.
    Suzuki A; Matsunaga K; Shin H; Tabudrav J; Shizuri Y; Ohizumi Y
    J Pharmacol Exp Ther; 2000 Feb; 292(2):725-30. PubMed ID: 10640311
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mechanisms of calcium release from the sarcoplasmic reticulum in skeletal muscle.
    Endo M
    Adv Exp Med Biol; 2005; 565():233-47; discussion 247, 397-403. PubMed ID: 16106979
    [No Abstract]   [Full Text] [Related]  

  • 38. Structural insights into Ca(2+)-activated long-range allosteric channel gating of RyR1.
    Wei R; Wang X; Zhang Y; Mukherjee S; Zhang L; Chen Q; Huang X; Jing S; Liu C; Li S; Wang G; Xu Y; Zhu S; Williams AJ; Sun F; Yin CC
    Cell Res; 2016 Sep; 26(9):977-94. PubMed ID: 27573175
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Three-dimensional visualization of FKBP12.6 binding to an open conformation of cardiac ryanodine receptor.
    Sharma MR; Jeyakumar LH; Fleischer S; Wagenknecht T
    Biophys J; 2006 Jan; 90(1):164-72. PubMed ID: 16214874
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The recombinant dihydropyridine receptor II-III loop and partly structured 'C' region peptides modify cardiac ryanodine receptor activity.
    Dulhunty AF; Karunasekara Y; Curtis SM; Harvey PJ; Board PG; Casarotto MG
    Biochem J; 2005 Feb; 385(Pt 3):803-13. PubMed ID: 15511220
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.