These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
125 related articles for article (PubMed ID: 10514001)
1. Distribution of gamma-tubulin in multipolar spindles and multinucleated cells induced by dimethylarsinic acid, a methylated derivative of inorganic arsenics, in Chinese hamster V79 cells. Ochi T; Nakajima F; Nasui M Toxicology; 1999 Aug; 136(2-3):79-88. PubMed ID: 10514001 [TBL] [Abstract][Full Text] [Related]
2. Induction of centrosome injury, multipolar spindles and multipolar division in cultured V79 cells exposed to dimethylarsinic acid: role for microtubules in centrosome dynamics. Ochi T Mutat Res; 2000 Nov; 454(1-2):21-33. PubMed ID: 11035156 [TBL] [Abstract][Full Text] [Related]
3. Induction of multinucleated cells in V79 Chinese hamster cells exposed to dimethylarsinic acid, a methylated derivative of inorganic arsenics: mechanism associated with the formation of aberrant mitotic spindles. Ochi T; Nakajima F; Shimizu A; Harada M Toxicol In Vitro; 1999 Feb; 13(1):11-25. PubMed ID: 20654464 [TBL] [Abstract][Full Text] [Related]
4. Role of mitotic motors, dynein and kinesin, in the induction of abnormal centrosome integrity and multipolar spindles in cultured V79 cells exposed to dimethylarsinic acid. Ochi T Mutat Res; 2002 Jan; 499(1):73-84. PubMed ID: 11804606 [TBL] [Abstract][Full Text] [Related]
5. Methylmercury, but not inorganic mercury, causes abnormality of centrosome integrity (multiple foci of gamma-tubulin), multipolar spindles and multinucleated cells without microtubule disruption in cultured Chinese hamster V79 cells. Ochi T Toxicology; 2002 Jun; 175(1-3):111-21. PubMed ID: 12049841 [TBL] [Abstract][Full Text] [Related]
6. Different effects of inorganic and dimethylated arsenic compounds on cell morphology, cytoskeletal organization, and DNA synthesis in cultured Chinese hamster V79 cells. Ochi T; Nakajima F; Fukumori N Arch Toxicol; 1998 Sep; 72(9):566-73. PubMed ID: 9806428 [TBL] [Abstract][Full Text] [Related]
7. Induction of multiple microtubule-organizing centers, multipolar spindles and multipolar division in cultured V79 cells exposed to diethylstilbestrol, estradiol-17beta and bisphenol A. Ochi T Mutat Res; 1999 Dec; 431(1):105-21. PubMed ID: 10656490 [TBL] [Abstract][Full Text] [Related]
8. Induction of structural and numerical changes of chromosome, centrosome abnormality, multipolar spindles and multipolar division in cultured Chinese hamster V79 cells by exposure to a trivalent dimethylarsenic compound. Ochi T; Suzuki T; Isono H; Schlagenhaufen C; Goessler W; Tsutsui T Mutat Res; 2003 Sep; 530(1-2):59-71. PubMed ID: 14563531 [TBL] [Abstract][Full Text] [Related]
9. M-phase specific centrosome-microtubule alterations induced by the fungicide MBC in human granulosa cells. Can A; Albertini DF Mutat Res; 1997 Jan; 373(1):139-51. PubMed ID: 9015162 [TBL] [Abstract][Full Text] [Related]
10. Function of donor cell centrosome in intraspecies and interspecies nuclear transfer embryos. Zhong ZS; Zhang G; Meng XQ; Zhang YL; Chen DY; Schatten H; Sun QY Exp Cell Res; 2005 May; 306(1):35-46. PubMed ID: 15878330 [TBL] [Abstract][Full Text] [Related]
11. Elongation of centriolar microtubule triplets contributes to the formation of the mitotic spindle in gamma-tubulin-depleted cells. Raynaud-Messina B; Mazzolini L; Moisand A; Cirinesi AM; Wright M J Cell Sci; 2004 Nov; 117(Pt 23):5497-507. PubMed ID: 15479719 [TBL] [Abstract][Full Text] [Related]
12. Making microtubules and mitotic spindles in cells without functional centrosomes. Mahoney NM; Goshima G; Douglass AD; Vale RD Curr Biol; 2006 Mar; 16(6):564-9. PubMed ID: 16546079 [TBL] [Abstract][Full Text] [Related]
13. Structure-effect relationship in the induction of mitotic phase-specific abnormality of centrosome integrity and multipolar spindles by steroidal estrogens and their derivatives in cultured mammalian cells. Ochi T; Oda T J Steroid Biochem Mol Biol; 2001 Aug; 78(2):113-22. PubMed ID: 11566435 [TBL] [Abstract][Full Text] [Related]
14. Tubulin composition and microtubule nucleation of a griseofulvin-resistant Chinese hamster ovary cell mutant with abnormal spindles. Kuriyama R; Borisy GG; Binder LI; Gottesman MM Exp Cell Res; 1985 Oct; 160(2):527-39. PubMed ID: 3899695 [TBL] [Abstract][Full Text] [Related]
15. Characterization of gamma-tubulin in Artemia: isoform composition and spatial distribution in polarized cells of the larval epidermis. Walling MA; Criel GR; MacRae TH Cell Motil Cytoskeleton; 1998; 40(4):331-41. PubMed ID: 9712263 [TBL] [Abstract][Full Text] [Related]
16. Gamma-tubulin localization changes from discrete polar organizers to anastral spindles and phragmoplasts in mitosis of Marchantia polymorpha L. Brown RC; Lemmon BE; Horio T Protoplasma; 2004 Dec; 224(3-4):187-93. PubMed ID: 15614479 [TBL] [Abstract][Full Text] [Related]
17. Microtubule nucleation at non-spindle pole body microtubule-organizing centers requires fission yeast centrosomin-related protein mod20p. Sawin KE; Lourenco PC; Snaith HA Curr Biol; 2004 May; 14(9):763-75. PubMed ID: 15120067 [TBL] [Abstract][Full Text] [Related]
18. Changes in microtubule organization after exposure to a benzimidazole derivative in Chinese hamster cells. Pisano C; Battistoni A; Antoccia A; Degrassi F; Tanzarella C Mutagenesis; 2000 Nov; 15(6):507-15. PubMed ID: 11077003 [TBL] [Abstract][Full Text] [Related]
19. Centrosomal proteins CG-NAP and kendrin provide microtubule nucleation sites by anchoring gamma-tubulin ring complex. Takahashi M; Yamagiwa A; Nishimura T; Mukai H; Ono Y Mol Biol Cell; 2002 Sep; 13(9):3235-45. PubMed ID: 12221128 [TBL] [Abstract][Full Text] [Related]
20. Gamma-tubulin distribution in interphase and mitotic cells upon stabilization and depolymerization of microtubules. Vorobjev IA; Uzbekov RE; Komarova YuA ; Alieva IB Membr Cell Biol; 2000; 14(2):219-35. PubMed ID: 11093584 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]