These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 10514509)

  • 1. ATP and the core "alpha-Crystallin" domain of the small heat-shock protein alphaB-crystallin.
    Muchowski PJ; Hays LG; Yates JR; Clark JI
    J Biol Chem; 1999 Oct; 274(42):30190-5. PubMed ID: 10514509
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Site-directed mutations within the core "alpha-crystallin" domain of the small heat-shock protein, human alphaB-crystallin, decrease molecular chaperone functions.
    Muchowski PJ; Wu GJ; Liang JJ; Adman ET; Clark JI
    J Mol Biol; 1999 Jun; 289(2):397-411. PubMed ID: 10366513
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional similarities between the small heat shock proteins Mycobacterium tuberculosis HSP 16.3 and human alphaB-crystallin.
    Valdez MM; Clark JI; Wu GJ; Muchowski PJ
    Eur J Biochem; 2002 Apr; 269(7):1806-13. PubMed ID: 11952782
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The beta4-beta8 groove is an ATP-interactive site in the alpha crystallin core domain of the small heat shock protein, human alphaB crystallin.
    Ghosh JG; Houck SA; Doneanu CE; Clark JI
    J Mol Biol; 2006 Dec; 364(3):364-75. PubMed ID: 17022999
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The function of the beta3 interactive domain in the small heat shock protein and molecular chaperone, human alphaB crystallin.
    Ghosh JG; Estrada MR; Houck SA; Clark JI
    Cell Stress Chaperones; 2006; 11(2):187-97. PubMed ID: 16817325
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Proteomic analysis of water insoluble proteins from normal and cataractous human lenses.
    Harrington V; Srivastava OP; Kirk M
    Mol Vis; 2007 Sep; 13():1680-94. PubMed ID: 17893670
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vivo carbamylation and acetylation of water-soluble human lens alphaB-crystallin lysine 92.
    Lapko VN; Smith DL; Smith JB
    Protein Sci; 2001 Jun; 10(6):1130-6. PubMed ID: 11369851
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vivo modification of the C-terminal lysine of human lens alphaB-crystallin.
    Lin P; Smith DL; Smith JB
    Exp Eye Res; 1997 Nov; 65(5):673-80. PubMed ID: 9367647
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Probing alpha-crystallin structure using chemical cross-linkers and mass spectrometry.
    Peterson JJ; Young MM; Takemoto LJ
    Mol Vis; 2004 Nov; 10():857-66. PubMed ID: 15570221
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Alpha-crystallin regions affected by adenosine 5'-triphosphate identified by hydrogen-deuterium exchange.
    Hasan A; Smith DL; Smith JB
    Biochemistry; 2002 Dec; 41(52):15876-82. PubMed ID: 12501218
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ATP-enhanced molecular chaperone functions of the small heat shock protein human alphaB crystallin.
    Muchowski PJ; Clark JI
    Proc Natl Acad Sci U S A; 1998 Feb; 95(3):1004-9. PubMed ID: 9448275
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interaction of Cu+2 with α-Crystallin: A Biophysical and Mass Spectrometric Study.
    Karmakar S; Das KP
    Protein Pept Lett; 2018; 25(3):275-284. PubMed ID: 29298644
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The N-terminal domain of alphaB-crystallin is protected from proteolysis by bound substrate.
    Aquilina JA; Watt SJ
    Biochem Biophys Res Commun; 2007 Feb; 353(4):1115-20. PubMed ID: 17207466
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamic O-GlcNAcylation of the small heat shock protein alpha B-crystallin.
    Roquemore EP; Chevrier MR; Cotter RJ; Hart GW
    Biochemistry; 1996 Mar; 35(11):3578-86. PubMed ID: 8639509
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A rapid and sensitive detection of D-Aspartic acid in Crystallin by chiral derivatized liquid chromatography mass spectrometry.
    Mizuno H; Miyazaki Y; Ito K; Todoroki K; Min JZ; Toyo'oka T
    J Chromatogr A; 2016 Oct; 1467():318-325. PubMed ID: 27435686
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Negative charges in the C-terminal domain stabilize the alphaB-crystallin complex.
    Boelens WC; Croes Y; de Ruwe M; de Reu L; de Jong WW
    J Biol Chem; 1998 Oct; 273(43):28085-90. PubMed ID: 9774426
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of the C-terminal extensions of alpha-crystallins. Swapping the C-terminal extension of alpha-crystallin to alphaB-crystallin results in enhanced chaperone activity.
    Pasta SY; Raman B; Ramakrishna T; Rao ChM
    J Biol Chem; 2002 Nov; 277(48):45821-8. PubMed ID: 12235146
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An atypical form of alphaB-crystallin is present in high concentration in some human cataractous lenses. Identification and characterization of aberrant N- and C-terminal processing.
    Jimenez-Asensio J; Colvis CM; Kowalak JA; Duglas-Tabor Y; Datiles MB; Moroni M; Mura U; Rao CM; Balasubramanian D; Janjani A; Garland D
    J Biol Chem; 1999 Nov; 274(45):32287-94. PubMed ID: 10542268
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of tryptophan oxidation products in bovine alpha-crystallin.
    Finley EL; Dillon J; Crouch RK; Schey KL
    Protein Sci; 1998 Nov; 7(11):2391-7. PubMed ID: 9828005
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of ATP on the interaction of alpha-crystallin with its substrates and its implications for the molecular chaperone function.
    Biswas A; Das KP
    J Biol Chem; 2004 Oct; 279(41):42648-57. PubMed ID: 15292216
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.