These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 10514973)

  • 1. On the possibility of shear-driven chromatography: a theoretical performance analysis.
    Desmet G; Baron GV
    J Chromatogr A; 1999 Sep; 855(1):57-70. PubMed ID: 10514973
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Porous silicon as a stationary phase for shear-driven chromatography.
    Clicq D; Tjerkstra RW; Gardeniers JG; van den Berg A; Baron GV; Desmet G
    J Chromatogr A; 2004 Apr; 1032(1-2):185-91. PubMed ID: 15065795
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experimental Van Deemter plots of shear-driven liquid chromatographic separations in disposable microchannels.
    Vervoort N; Clicq D; Baron GV; Desmet G
    J Chromatogr A; 2003 Feb; 987(1-2):39-48. PubMed ID: 12613795
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of the most recent chromatographic approaches applied for fast and high resolution separations: Theory and practice.
    Fekete S; Veuthey JL; Guillarme D
    J Chromatogr A; 2015 Aug; 1408():1-14. PubMed ID: 26187764
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sub-second liquid chromatographic separations by means of shear-driven chromatography.
    Clic D; Vervoort N; Vounckx R; Ottevaere H; Buijs J; Gooijer C; Ariese F; Baron GV; Desmet G
    J Chromatogr A; 2002 Dec; 979(1-2):33-42. PubMed ID: 12498231
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Supercritical fluid chromatography-mass spectrometry for chemical analysis.
    Li F; Hsieh Y
    J Sep Sci; 2008 May; 31(8):1231-7. PubMed ID: 18366029
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exploring the speed limits of liquid chromatography using shear-driven flows through 45 and 85 nm deep nano-channels.
    De Bruyne S; De Malsche W; Fekete V; Thienpont H; Ottevaere H; Gardeniers H; Desmet G
    Analyst; 2013 Oct; 138(20):6127-33. PubMed ID: 23965574
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chromatographic explanation for the side-wall induced band broadening in pressure-driven and shear-driven flows through channels with a high aspect-ratio rectangular cross-section.
    Desmet G; Baron GV
    J Chromatogr A; 2002 Feb; 946(1-2):51-8. PubMed ID: 11873982
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Shear-flow-based chromatographic separations as an alternative to pressure-driven liquid chromatography.
    Desmet G; Vervoort N; Clicq D; Huau A; Gzil P; Baron GV
    J Chromatogr A; 2002 Mar; 948(1-2):19-34. PubMed ID: 12831179
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dispersion reduction in open-channel liquid electrochromatographic columns via pressure-driven back flow.
    Dutta D; Leighton DT
    Anal Chem; 2003 Jul; 75(14):3352-9. PubMed ID: 14570184
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of liquid and supercritical fluid chromatography mobile phases for enantioselective separations on polysaccharide stationary phases.
    Khater S; Lozac'h MA; Adam I; Francotte E; West C
    J Chromatogr A; 2016 Oct; 1467():463-472. PubMed ID: 27378250
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Combined supercritical fluid chromatographic tests to improve the classification of numerous stationary phases used in reversed-phase liquid chromatography.
    West C; Fougère L; Lesellier E
    J Chromatogr A; 2008 May; 1189(1-2):227-44. PubMed ID: 18201706
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A unified classification of stationary phases for packed column supercritical fluid chromatography.
    West C; Lesellier E
    J Chromatogr A; 2008 May; 1191(1-2):21-39. PubMed ID: 18384800
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chiral high-performance liquid and supercritical fluid chromatographic enantioseparations of limonene-based bicyclic aminoalcohols and aminodiols on polysaccharide-based chiral stationary phases.
    Orosz T; Bajtai A; Minh Le T; Tanács D; Szakonyi Z; Fülöp F; Péter A; Ilisz I
    Biomed Chromatogr; 2019 May; 33(5):e4517. PubMed ID: 30807652
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Supercritical fluid simulated moving bed chromatography II. Langmuir isotherm.
    Di Giovanni O; Mazzotti M; Morbidell M; Denet F; Hauck W; Nicoud RM
    J Chromatogr A; 2001 Jun; 919(1):1-12. PubMed ID: 11459295
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of liquid chromatographic stationary phases by Raman spectroscopy. Effect of ligand type.
    Doyle CA; Vickers TJ; Mann CK; Dorsey JG
    J Chromatogr A; 1997 Aug; 779(1-2):91-112. PubMed ID: 9335120
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Use of 120-nm deep channels for liquid chromatographic separations.
    Fekete V; Clicq D; De Malsche W; Gardeniers H; Desmet G
    J Chromatogr A; 2008 May; 1189(1-2):2-9. PubMed ID: 18037427
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stationary phases for packed-column supercritical fluid chromatography.
    Poole CF
    J Chromatogr A; 2012 Aug; 1250():157-71. PubMed ID: 22209357
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Plate theory model under non-ideal chromatography].
    Wang SK; Xia Y; Wang SL
    Se Pu; 2002 Jan; 20(1):30-3. PubMed ID: 12541613
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Predictive kinetic optimisation of hydrophilic interaction chromatography × reversed phase liquid chromatography separations: Experimental verification and application to phenolic analysis.
    Muller M; Tredoux AGJ; de Villiers A
    J Chromatogr A; 2018 Oct; 1571():107-120. PubMed ID: 30100525
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.