These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
109 related articles for article (PubMed ID: 10515605)
21. Antifungal property of hibicuslide C and its membrane-active mechanism in Candida albicans. Hwang JH; Jin Q; Woo ER; Lee DG Biochimie; 2013 Oct; 95(10):1917-22. PubMed ID: 23816874 [TBL] [Abstract][Full Text] [Related]
22. In vitro and in vivo antifungal activity of two peptides with the same composition and different distribution. Ding K; Shen P; Xie Z; Wang L; Dang X Comp Biochem Physiol C Toxicol Pharmacol; 2022 Feb; 252():109243. PubMed ID: 34768011 [TBL] [Abstract][Full Text] [Related]
23. Dual antifungal activity against Candida albicans of copper metallic nanostructures and hierarchical copper oxide marigold-like nanostructures grown in situ in the culture medium. Martínez A; Apip C; Meléndrez MF; Domínguez M; Sánchez-Sanhueza G; Marzialetti T; Catalán A J Appl Microbiol; 2021 Jun; 130(6):1883-1892. PubMed ID: 32970915 [TBL] [Abstract][Full Text] [Related]
24. Antifungal mechanism of an antimicrobial peptide, HP (2--20), derived from N-terminus of Helicobacter pylori ribosomal protein L1 against Candida albicans. Lee DG; Park Y; Kim HN; Kim HK; Kim PI; Choi BH; Hahm KS Biochem Biophys Res Commun; 2002 Mar; 291(4):1006-13. PubMed ID: 11866466 [TBL] [Abstract][Full Text] [Related]
25. Antifungal activity of 4-hydroxy-3-(3-methyl-2-butenyl)acetophenone against Candida albicans: evidence for the antifungal mode of action. Soberón JR; Lizarraga EF; Sgariglia MA; Carrasco Juárez MB; Sampietro DA; Ben Altabef A; Catalán CA; Vattuone MA Antonie Van Leeuwenhoek; 2015 Nov; 108(5):1047-57. PubMed ID: 26342699 [TBL] [Abstract][Full Text] [Related]
26. Pr-1, a novel antifungal protein from pumpkin rinds. Park SC; Lee JR; Kim JY; Hwang I; Nah JW; Cheong H; Park Y; Hahm KS Biotechnol Lett; 2010 Jan; 32(1):125-30. PubMed ID: 19760117 [TBL] [Abstract][Full Text] [Related]
27. Antifungal effect of CopA3 monomer peptide via membrane-active mechanism and stability to proteolysis of enantiomeric D-CopA3. Choi H; Hwang JS; Kim H; Lee DG Biochem Biophys Res Commun; 2013 Oct; 440(1):94-8. PubMed ID: 24041699 [TBL] [Abstract][Full Text] [Related]
28. Preparation, characterization and in vitro activities evaluation of solid lipid nanoparticles based on PEG-40 stearate for antifungal drugs vaginal delivery. Cassano R; Ferrarelli T; Mauro MV; Cavalcanti P; Picci N; Trombino S Drug Deliv; 2016; 23(3):1047-56. PubMed ID: 25005582 [TBL] [Abstract][Full Text] [Related]
29. Amphotericin B encapsulated in micelles based on poly(ethylene oxide)-block-poly(L-amino acid) derivatives exerts reduced in vitro hemolysis but maintains potent in vivo antifungal activity. Adams ML; Andes DR; Kwon GS Biomacromolecules; 2003; 4(3):750-7. PubMed ID: 12741794 [TBL] [Abstract][Full Text] [Related]
30. In vitro activity of eugenol against Candida albicans biofilms. He M; Du M; Fan M; Bian Z Mycopathologia; 2007 Mar; 163(3):137-43. PubMed ID: 17356790 [TBL] [Abstract][Full Text] [Related]
31. β-lactam substituted polycyclic fused pyrrolidine/pyrrolizidine derivatives eradicate C. albicans in an ex vivo human dentinal tubule model by inhibiting sterol 14-α demethylase and cAMP pathway. Gowri M; Sofi Beaula W; Biswal J; Dhamodharan P; Saiharish R; Rohan prasad S; Pitani R; Kandaswamy D; Raghunathan R; Jeyakanthan J; Rayala SK; Venkatraman G Biochim Biophys Acta; 2016 Apr; 1860(4):636-47. PubMed ID: 26723175 [TBL] [Abstract][Full Text] [Related]
32. Linolenic acid-modified MPEG-PEI micelles for encapsulation of amphotericin B. Xu H; Teng F; Zhou F; Zhu L; Wen Y; Feng R; Song Z Future Med Chem; 2019 Oct; 11(20):2647-2662. PubMed ID: 31621420 [No Abstract] [Full Text] [Related]
33. Assessment of in vitro antifungal efficacy and in vivo toxicity of Amphotericin B-loaded PLGA and PLGA-PEG blend nanoparticles. Moraes Moreira Carraro TC; Altmeyer C; Maissar Khalil N; Mara Mainardes R J Mycol Med; 2017 Dec; 27(4):519-529. PubMed ID: 28797532 [TBL] [Abstract][Full Text] [Related]
34. Antifungal Efficacy of Antimicrobial Peptide Octominin II against Jayasinghe JNC; Whang I; De Zoysa M Int J Mol Sci; 2023 Sep; 24(18):. PubMed ID: 37762357 [TBL] [Abstract][Full Text] [Related]
35. Mechanism of action of novel synthetic dodecapeptides against Candida albicans. Maurya IK; Thota CK; Sharma J; Tupe SG; Chaudhary P; Singh MK; Thakur IS; Deshpande M; Prasad R; Chauhan VS Biochim Biophys Acta; 2013 Nov; 1830(11):5193-203. PubMed ID: 23876294 [TBL] [Abstract][Full Text] [Related]
36. Structure-activity relationship studies of ultra-short peptides with potent activities against fluconazole-resistant Candida albicans. Ng SMS; Yap JM; Lau QY; Ng FM; Ong EHQ; Barkham T; Teo JWP; Alfatah M; Kong KW; Hoon S; Arumugam P; Hill J; Brian Chia CS Eur J Med Chem; 2018 Apr; 150():479-490. PubMed ID: 29549835 [TBL] [Abstract][Full Text] [Related]
37. Effect of beta-1,6-glucan inhibitors on the invasion process of Candida albicans: potential mechanism of their in vivo efficacy. Kitamura A; Higuchi S; Hata M; Kawakami K; Yoshida K; Namba K; Nakajima R Antimicrob Agents Chemother; 2009 Sep; 53(9):3963-71. PubMed ID: 19596881 [TBL] [Abstract][Full Text] [Related]
39. Haloprogin: mode of action studies in Candida albicans. Harrison EF; Zygmunt WA Can J Microbiol; 1974 Sep; 20(9):1241-5. PubMed ID: 4608935 [No Abstract] [Full Text] [Related]
40. Preparation, characterization, and evaluation of amphotericin B-loaded MPEG-PCL-g-PEI micelles for local treatment of oral Zhou L; Zhang P; Chen Z; Cai S; Jing T; Fan H; Mo F; Zhang J; Lin R Int J Nanomedicine; 2017; 12():4269-4283. PubMed ID: 28652732 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]