BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 10516007)

  • 1. Structure-based mutagenesis of the human immunodeficiency virus type 1 DNA attachment site: effects on integration and cDNA synthesis.
    Brown HE; Chen H; Engelman A
    J Virol; 1999 Nov; 73(11):9011-20. PubMed ID: 10516007
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of a replication-defective human immunodeficiency virus type 1 att site mutant that is blocked after the 3' processing step of retroviral integration.
    Chen H; Engelman A
    J Virol; 2000 Sep; 74(17):8188-93. PubMed ID: 10933731
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genetic analysis of human immunodeficiency virus type 1 integrase and the U3 att site: unusual phenotype of mutants in the zinc finger-like domain.
    Masuda T; Planelles V; Krogstad P; Chen IS
    J Virol; 1995 Nov; 69(11):6687-96. PubMed ID: 7474078
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Both substrate and target oligonucleotide sequences affect in vitro integration mediated by human immunodeficiency virus type 1 integrase protein produced in Saccharomyces cerevisiae.
    Leavitt AD; Rose RB; Varmus HE
    J Virol; 1992 Apr; 66(4):2359-68. PubMed ID: 1548767
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multiple integrase functions are required to form the native structure of the human immunodeficiency virus type I intasome.
    Chen H; Wei SQ; Engelman A
    J Biol Chem; 1999 Jun; 274(24):17358-64. PubMed ID: 10358097
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Integrase mutants of human immunodeficiency virus type 1 with a specific defect in integration.
    Taddeo B; Haseltine WA; Farnet CM
    J Virol; 1994 Dec; 68(12):8401-5. PubMed ID: 7966634
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multiple effects of mutations in human immunodeficiency virus type 1 integrase on viral replication.
    Engelman A; Englund G; Orenstein JM; Martin MA; Craigie R
    J Virol; 1995 May; 69(5):2729-36. PubMed ID: 7535863
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Specific and independent recognition of U3 and U5 att sites by human immunodeficiency virus type 1 integrase in vivo.
    Masuda T; Kuroda MJ; Harada S
    J Virol; 1998 Oct; 72(10):8396-402. PubMed ID: 9733892
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of a sequence within U5 required for human immunodeficiency virus type 1 to stably maintain a primer binding site complementary to tRNA(Met).
    Kang SM; Zhang Z; Morrow CD
    J Virol; 1997 Jan; 71(1):207-17. PubMed ID: 8985340
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Avian retrovirus DNA internal attachment site requirements for full-site integration in vitro.
    Chiu R; Grandgenett DP
    J Virol; 2000 Sep; 74(18):8292-8. PubMed ID: 10954527
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nuclear localization of human immunodeficiency virus type 1 preintegration complexes (PICs): V165A and R166A are pleiotropic integrase mutants primarily defective for integration, not PIC nuclear import.
    Limón A; Devroe E; Lu R; Ghory HZ; Silver PA; Engelman A
    J Virol; 2002 Nov; 76(21):10598-607. PubMed ID: 12368302
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An integration-defective U5 deletion mutant of human immunodeficiency virus type 1 reverts by eliminating additional long terminal repeat sequences.
    Vicenzi E; Dimitrov DS; Engelman A; Migone TS; Purcell DF; Leonard J; Englund G; Martin MA
    J Virol; 1994 Dec; 68(12):7879-90. PubMed ID: 7966578
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genetic evidence of the interaction between tRNA(Lys,3) and U5 facilitating efficient initiation of reverse transcription by human immunodeficiency virus type 1.
    Zhang Z; Kang SM; Morrow CD
    AIDS Res Hum Retroviruses; 1998 Jul; 14(11):979-88. PubMed ID: 9686644
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Concerted integration of retrovirus-like DNA by human immunodeficiency virus type 1 integrase.
    Goodarzi G; Im GJ; Brackmann K; Grandgenett D
    J Virol; 1995 Oct; 69(10):6090-7. PubMed ID: 7666512
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sequences in the human immunodeficiency virus type 1 U3 region required for in vivo and in vitro integration.
    Reicin AS; Kalpana G; Paik S; Marmon S; Goff S
    J Virol; 1995 Sep; 69(9):5904-7. PubMed ID: 7637038
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recombinant human immunodeficiency virus type 1 integrase exhibits a capacity for full-site integration in vitro that is comparable to that of purified preintegration complexes from virus-infected cells.
    Sinha S; Grandgenett DP
    J Virol; 2005 Jul; 79(13):8208-16. PubMed ID: 15956566
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wild-type levels of nuclear localization and human immunodeficiency virus type 1 replication in the absence of the central DNA flap.
    Limón A; Nakajima N; Lu R; Ghory HZ; Engelman A
    J Virol; 2002 Dec; 76(23):12078-86. PubMed ID: 12414949
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Paired DNA three-way junctions as scaffolds for assembling integrase complexes.
    Johnson EP; Bushman FD
    Virology; 2001 Aug; 286(2):304-16. PubMed ID: 11485398
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Activity of recombinant HIV-1 integrase on mini-HIV DNA.
    Cherepanov P; Surratt D; Toelen J; Pluymers W; Griffith J; De Clercq E; Debyser Z
    Nucleic Acids Res; 1999 May; 27(10):2202-10. PubMed ID: 10219094
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Contribution of the C-terminal tri-lysine regions of human immunodeficiency virus type 1 integrase for efficient reverse transcription and viral DNA nuclear import.
    Ao Z; Fowke KR; Cohen EA; Yao X
    Retrovirology; 2005 Oct; 2():62. PubMed ID: 16232319
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.