These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 10516251)

  • 1. Effect of brain stem NMDA-receptor blockade by MK-801 on behavioral and fos responses to vagal satiety signals.
    Zheng H; Kelly L; Patterson LM; Berthoud HR
    Am J Physiol; 1999 Oct; 277(4):R1104-11. PubMed ID: 10516251
    [TBL] [Abstract][Full Text] [Related]  

  • 2. NMDA channels control meal size via central vagal afferent terminals.
    Gillespie BR; Burns GA; Ritter RC
    Am J Physiol Regul Integr Comp Physiol; 2005 Nov; 289(5):R1504-11. PubMed ID: 16020524
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lesions of the dorsal vagal complex abolish increases in meal size induced by NMDA receptor blockade.
    Treece BR; Ritter RC; Burns GA
    Brain Res; 2000 Jul; 872(1-2):37-43. PubMed ID: 10924673
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Additive satiety-delaying effects of capsaicin-induced visceral deafferentation and NMDA receptor blockade suggest separate pathways.
    Berthoud H; Patterson LM; Morales S; Zheng H
    Pharmacol Biochem Behav; 2000 Oct; 67(2):371-5. PubMed ID: 11124403
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Delay in meal termination follows blockade of N-methyl-D-aspartate receptors in the dorsal hindbrain.
    Treece BR; Covasa M; Ritter RC; Burns GA
    Brain Res; 1998 Nov; 810(1-2):34-40. PubMed ID: 9813231
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Visceral afferent participation in delayed satiation following NMDA receptor blockade.
    Burns GA; Ritter RC
    Physiol Behav; 1998 Nov; 65(2):361-6. PubMed ID: 9855488
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gastric distension-induced c-fos expression in catecholaminergic neurons of rat dorsal vagal complex.
    Willing AE; Berthoud HR
    Am J Physiol; 1997 Jan; 272(1 Pt 2):R59-67. PubMed ID: 9038991
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Leptin Sensitizes NTS Neurons to Vagal Input by Increasing Postsynaptic NMDA Receptor Currents.
    Neyens D; Zhao H; Huston NJ; Wayman GA; Ritter RC; Appleyard SM
    J Neurosci; 2020 Sep; 40(37):7054-7064. PubMed ID: 32817248
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mediation by N-methyl-D-aspartate and non-N-methyl-D-aspartate receptors in the expression of Fos protein at the nucleus tractus solitarii in response to baroreceptor activation in the rat.
    Chan JY; Yang SM; Chan SH
    Neuroscience; 1998 Mar; 83(1):93-105. PubMed ID: 9466401
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gastric distension-induced release of 5-HT stimulates c-fos expression in specific brain nuclei via 5-HT3 receptors in conscious rats.
    Mazda T; Yamamoto H; Fujimura M; Fujimiya M
    Am J Physiol Gastrointest Liver Physiol; 2004 Jul; 287(1):G228-35. PubMed ID: 14684379
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CCK enhances response to gastric distension by acting on capsaicin-insensitive vagal afferents.
    van de Wall EH; Duffy P; Ritter RC
    Am J Physiol Regul Integr Comp Physiol; 2005 Sep; 289(3):R695-703. PubMed ID: 15905220
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Involvement of glutamate in gastrointestinal vago-vagal reflexes initiated by gastrointestinal distention in the rat.
    Zhang X; Fogel R
    Auton Neurosci; 2003 Jan; 103(1-2):19-37. PubMed ID: 12531396
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cooperation of NMDA and tachykinin NK(1) and NK(2) receptors in the medullary transmission of vagal afferent input from the acid-threatened rat stomach.
    Jocic M; Schuligoi R; Schöninkle E; Pabst MA; Holzer P
    Pain; 2001 Jan; 89(2-3):147-57. PubMed ID: 11166470
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acute high-fat diet upregulates glutamatergic signaling in the dorsal motor nucleus of the vagus.
    Clyburn C; Travagli RA; Browning KN
    Am J Physiol Gastrointest Liver Physiol; 2018 May; 314(5):G623-G634. PubMed ID: 29368945
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Food-related gastrointestinal signals activate caudal brainstem neurons expressing both NMDA and AMPA receptors.
    Berthoud HR; Earle T; Zheng H; Patterson LM; Phifer C
    Brain Res; 2001 Oct; 915(2):143-54. PubMed ID: 11595203
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sexual dimorphism in the response to N-methyl-D-aspartate receptor antagonists and morphine on behavior and c-Fos induction in the rat brain.
    D'Souza DN; Harlan RE; Garcia MM
    Neuroscience; 1999; 93(4):1539-47. PubMed ID: 10501478
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cholinergic neurotransmission participates in increased food intake induced by NMDA receptor blockade.
    Covasa M; Ritter RC; Burns GA
    Am J Physiol Regul Integr Comp Physiol; 2003 Sep; 285(3):R641-8. PubMed ID: 12775553
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dizocilpine maleate, an N-methyl-D-aspartate antagonist, inhibits dipsogenic responses and C-Fos expression induced by intracerebral infusion of angiotensin II.
    Xu Z; Lane JM; Zhu B; Herbert J
    Neuroscience; 1997 May; 78(1):203-14. PubMed ID: 9135101
    [TBL] [Abstract][Full Text] [Related]  

  • 19. NMDA receptor participation in control of food intake by the stomach.
    Covasa M; Ritter RC; Burns GA
    Am J Physiol Regul Integr Comp Physiol; 2000 May; 278(5):R1362-8. PubMed ID: 10801308
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The non-competitive NMDA antagonist MK-801 increases food intake in rats.
    Burns GA; Ritter RC
    Pharmacol Biochem Behav; 1997 Jan; 56(1):145-9. PubMed ID: 8981622
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.