BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

295 related articles for article (PubMed ID: 10516309)

  • 1. Reorganization and movement of microtubules in axonal growth cones and developing interstitial branches.
    Dent EW; Callaway JL; Szebenyi G; Baas PW; Kalil K
    J Neurosci; 1999 Oct; 19(20):8894-908. PubMed ID: 10516309
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Wnt5a evokes cortical axon outgrowth and repulsive guidance by tau mediated reorganization of dynamic microtubules.
    Li L; Fothergill T; Hutchins BI; Dent EW; Kalil K
    Dev Neurobiol; 2014 Aug; 74(8):797-817. PubMed ID: 23818454
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Common mechanisms underlying growth cone guidance and axon branching.
    Kalil K; Szebenyi G; Dent EW
    J Neurobiol; 2000 Aug; 44(2):145-58. PubMed ID: 10934318
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Axon branching requires interactions between dynamic microtubules and actin filaments.
    Dent EW; Kalil K
    J Neurosci; 2001 Dec; 21(24):9757-69. PubMed ID: 11739584
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microtubule fragmentation and partitioning in the axon during collateral branch formation.
    Yu W; Ahmad FJ; Baas PW
    J Neurosci; 1994 Oct; 14(10):5872-84. PubMed ID: 7931550
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Xenopus cytoplasmic linker-associated protein 1 (XCLASP1) promotes axon elongation and advance of pioneer microtubules.
    Marx A; Godinez WJ; Tsimashchuk V; Bankhead P; Rohr K; Engel U
    Mol Biol Cell; 2013 May; 24(10):1544-58. PubMed ID: 23515224
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differential outgrowth of axons and their branches is regulated by localized calcium transients.
    Hutchins BI; Kalil K
    J Neurosci; 2008 Jan; 28(1):143-53. PubMed ID: 18171932
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Microtubule-Associated Protein Tau Mediates the Organization of Microtubules and Their Dynamic Exploration of Actin-Rich Lamellipodia and Filopodia of Cortical Growth Cones.
    Biswas S; Kalil K
    J Neurosci; 2018 Jan; 38(2):291-307. PubMed ID: 29167405
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cytoplasmic dynein and LIS1 are required for microtubule advance during growth cone remodeling and fast axonal outgrowth.
    Grabham PW; Seale GE; Bennecib M; Goldberg DJ; Vallee RB
    J Neurosci; 2007 May; 27(21):5823-34. PubMed ID: 17522326
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative analysis of microtubule transport in growing nerve processes.
    Ma Y; Shakiryanova D; Vardya I; Popov SV
    Curr Biol; 2004 Apr; 14(8):725-30. PubMed ID: 15084289
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Growth cones are not required for initial establishment of polarity or differential axon branch growth in cultured hippocampal neurons.
    Ruthel G; Hollenbeck PJ
    J Neurosci; 2000 Mar; 20(6):2266-74. PubMed ID: 10704502
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Wnt regulates axon behavior through changes in microtubule growth directionality: a new role for adenomatous polyposis coli.
    Purro SA; Ciani L; Hoyos-Flight M; Stamatakou E; Siomou E; Salinas PC
    J Neurosci; 2008 Aug; 28(34):8644-54. PubMed ID: 18716223
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microtubule-associated protein 1B controls directionality of growth cone migration and axonal branching in regeneration of adult dorsal root ganglia neurons.
    Bouquet C; Soares S; von Boxberg Y; Ravaille-Veron M; Propst F; Nothias F
    J Neurosci; 2004 Aug; 24(32):7204-13. PubMed ID: 15306655
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The kinesin-2 family member KIF3C regulates microtubule dynamics and is required for axon growth and regeneration.
    Gumy LF; Chew DJ; Tortosa E; Katrukha EA; Kapitein LC; Tolkovsky AM; Hoogenraad CC; Fawcett JW
    J Neurosci; 2013 Jul; 33(28):11329-45. PubMed ID: 23843507
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Disorganized microtubules underlie the formation of retraction bulbs and the failure of axonal regeneration.
    Ertürk A; Hellal F; Enes J; Bradke F
    J Neurosci; 2007 Aug; 27(34):9169-80. PubMed ID: 17715353
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A model for generating differences in microtubules between axonal branches depending on the distance from terminals.
    Imanaka C; Shimada S; Ito S; Kamada M; Iguchi T; Konishi Y
    Brain Res; 2023 Jan; 1799():148166. PubMed ID: 36402177
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interstitial branches develop from active regions of the axon demarcated by the primary growth cone during pausing behaviors.
    Szebenyi G; Callaway JL; Dent EW; Kalil K
    J Neurosci; 1998 Oct; 18(19):7930-40. PubMed ID: 9742160
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Myosin II activity facilitates microtubule bundling in the neuronal growth cone neck.
    Burnette DT; Ji L; Schaefer AW; Medeiros NA; Danuser G; Forscher P
    Dev Cell; 2008 Jul; 15(1):163-9. PubMed ID: 18606149
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Septin-driven coordination of actin and microtubule remodeling regulates the collateral branching of axons.
    Hu J; Bai X; Bowen JR; Dolat L; Korobova F; Yu W; Baas PW; Svitkina T; Gallo G; Spiliotis ET
    Curr Biol; 2012 Jun; 22(12):1109-15. PubMed ID: 22608511
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Drosophila growth cones: a genetically tractable platform for the analysis of axonal growth dynamics.
    Sánchez-Soriano N; Gonçalves-Pimentel C; Beaven R; Haessler U; Ofner-Ziegenfuss L; Ballestrem C; Prokop A
    Dev Neurobiol; 2010 Jan; 70(1):58-71. PubMed ID: 19937774
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.